LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

Related tags

Deep LearningLV-BERT
Overview

LV-BERT

Introduction

In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, please refer to our paper LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021).

Requirements

  • Python 3.6
  • TensorFlow 1.15
  • numpy
  • scikit-learn

Experiments

Firstly, set your data dir (absolute) to place datasets and models by

DATA_DIR=/path/to/data/dir

Fine-tining

We give the instruction to fine-tune a pre-trained LV-BERT-small (13M parameters) on GLUE. You can refer to this Google Colab notebook for a quick example. All models of different are provided this Google Drive folder. The models are pre-trained 1M steps with sequence length 128 to save compute. *_seq512 named models are trained for more 100K steps with sequence length 512 whichs are used for long-sequence tasks like SQuAD. See our paper for more details on model performance.

  1. Create your data directory.
mkdir -p $DATA_DIR/models && cp vocab.txt $DATA_DIR/

Put the pre-trained model in the corresponding directory

mv lv-bert_small $DATA_DIR/models/
  1. Download the GLUE data by running
python3 download_glue_data.py
  1. Set up the data by running
cd glue_data && mv CoLA cola && mv MNLI mnli && mv MRPC mrpc && mv QNLI qnli && mv QQP qqp && mv RTE rte && mv SST-2 sst && mv STS-B sts && mv diagnostic/diagnostic.tsv mnli && mkdir -p $DATA_DIR/finetuning_data && mv * $DATA_DIR/finetuning_data && cd ..
  1. Fine-tune the model by running
bash finetune.sh $DATA_DIR

PS: (a) You can test different tasks by changing configs in finetune.sh. (b) Some of the datasets on GLUE are small, causing that the results may vary substantially for different random seeds. The same as ELECTRA, we report the median of 10 fine-tuning runs from the same pre-trained model for each result.

Pre-training

We give the instruction to pre-train LV-BERT-small (13M parameters) using the OpenWebText corpus.

  1. First download the OpenWebText pre-traing corpus (12G).

  2. After downloading the pre-training corpus, build the pre-training dataset tf-record by running

bash build_data.sh $DATA_DIR
  1. Then, pre-train the model by running
bash pretrain.sh $DATA_DIR

Bibtex

@inproceedings{yu2021lv-bert,
        author = {Yu, Weihao and Jiang, Zihang and Chen, Fei, Hou, Qibin and Feng, Jiashi},
        title = {LV-BERT: Exploiting Layer Variety for BERT},
        booktitle = {Findings of ACL},
        month = {August},
        year = {2021}
}

Reference

This repo is based on the repo ELECTRA.

Owner
Weihao Yu
PhD student at NUS
Weihao Yu
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022