Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Overview

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics

@WIFS2021 (Montpellier, France)

Rony Abecidan, Vincent Itier, Jeremie Boulanger, Patrick Bas

Installation

To be able to reproduce our experiments and do your own ones, please follow our Installation Instructions

Architecture used

Domain Adaptation in action

  • Source : Half of images from the Splicing category of DEFACTO
  • Target : Other half of the images from the Splicing category of DEFACTO, compressed to JPEG with a quality factor of 5%

To have a quick idea of the adaptation impact on the training phase, we selected a batch of size 512 from the target and, we represented the evolution of the final embeddings distributions from this batch during the training according to the setups SrcOnly and Update($\sigma=8$) described in the paper. The training relative to the SrcOnly setup is on the left meanwhile the one relative to Update($\sigma=8$) is on the right.

Don't hesitate to click on the gif below to see it better !

  • As you can observe, in the SrcOnly setup, the forgery detector is more and more prone to false alarms, certainly because compressing images to QF5 results in creating artifacts in the high frequencies that can be misinterpreted by the model. However, it has no real difficulty to identify correctly the forged images.

  • In parallel, in the Update setup, the forgery detector is more informed and make less false alarms during the training.

Discrepancies with the first version of our article

Several modifications have been carried out since the writing of this paper in order to :

  • Generate databases as most clean as possible
  • Make our results as most reproducible as possible
  • Reduce effectively computation time and memory space

Considering that remark, you will not exactly retrieve the results we shared in the first version of the paper with the implementation proposed here. Nevertheless, the results we got from this new implementation are comparable with the previous ones and you should obtain similar results as the ones shared in this page.

For more information about the modifications we performed and the reasons behind, click here

Main references

@inproceedings{mandelli2020training,
  title={Training {CNNs} in Presence of {JPEG} Compression: Multimedia Forensics vs Computer Vision},
  author={Mandelli, Sara and Bonettini, Nicol{\`o} and Bestagini, Paolo and Tubaro, Stefano},
  booktitle={2020 IEEE International Workshop on Information Forensics and Security (WIFS)},
  pages={1--6},
  year={2020},
  organization={IEEE}
}

@inproceedings{bayar2016,
  title={A deep learning approach to universal image manipulation detection using a new convolutional layer},
  author={Bayar, Belhassen and Stamm, Matthew C},
  booktitle={Proceedings of the 4th ACM workshop on information hiding and multimedia security (IH\&MMSec)},
  pages={5--10},
  year={2016}
}

@inproceedings{long2015learning,
  title={Learning transferable features with deep adaptation networks},
  author={Long, M. and Cao, Y. and Wang, J. and Jordan, M.},
  booktitle={International Conference on Machine Learning},
  pages={97--105},
  year={2015},
  organization={PMLR}
}


@inproceedings{DEFACTODataset, 
	author = {Ga{\"e}l Mahfoudi and Badr Tajini and Florent Retraint and Fr{\'e}d{\'e}ric Morain-Nicolier and Jean Luc Dugelay and Marc Pic},
	title={{DEFACTO:} Image and Face Manipulation Dataset},
	booktitle={27th European Signal Processing Conference (EUSIPCO 2019)},
	year={2019}
}

Citing our paper

If you wish to refer to our paper, please use the following BibTeX entry

@inproceedings{abecidan:hal-03374780,
  TITLE = {{Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics}},
  AUTHOR = {Abecidan, Rony and Itier, Vincent and Boulanger, J{\'e}r{\'e}mie and Bas, Patrick},
  URL = {https://hal.archives-ouvertes.fr/hal-03374780},
  BOOKTITLE = {{WIFS 2021 : IEEE International Workshop on Information Forensics and Security}},
  ADDRESS = {Montpellier, France},
  PUBLISHER = {{IEEE}},
  YEAR = {2021},
  MONTH = Dec,
  PDF = {https://hal.archives-ouvertes.fr/hal-03374780/file/2021_wifs.pdf},
  HAL_ID = {hal-03374780}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023