Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Overview

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics

@WIFS2021 (Montpellier, France)

Rony Abecidan, Vincent Itier, Jeremie Boulanger, Patrick Bas

Installation

To be able to reproduce our experiments and do your own ones, please follow our Installation Instructions

Architecture used

Domain Adaptation in action

  • Source : Half of images from the Splicing category of DEFACTO
  • Target : Other half of the images from the Splicing category of DEFACTO, compressed to JPEG with a quality factor of 5%

To have a quick idea of the adaptation impact on the training phase, we selected a batch of size 512 from the target and, we represented the evolution of the final embeddings distributions from this batch during the training according to the setups SrcOnly and Update($\sigma=8$) described in the paper. The training relative to the SrcOnly setup is on the left meanwhile the one relative to Update($\sigma=8$) is on the right.

Don't hesitate to click on the gif below to see it better !

  • As you can observe, in the SrcOnly setup, the forgery detector is more and more prone to false alarms, certainly because compressing images to QF5 results in creating artifacts in the high frequencies that can be misinterpreted by the model. However, it has no real difficulty to identify correctly the forged images.

  • In parallel, in the Update setup, the forgery detector is more informed and make less false alarms during the training.

Discrepancies with the first version of our article

Several modifications have been carried out since the writing of this paper in order to :

  • Generate databases as most clean as possible
  • Make our results as most reproducible as possible
  • Reduce effectively computation time and memory space

Considering that remark, you will not exactly retrieve the results we shared in the first version of the paper with the implementation proposed here. Nevertheless, the results we got from this new implementation are comparable with the previous ones and you should obtain similar results as the ones shared in this page.

For more information about the modifications we performed and the reasons behind, click here

Main references

@inproceedings{mandelli2020training,
  title={Training {CNNs} in Presence of {JPEG} Compression: Multimedia Forensics vs Computer Vision},
  author={Mandelli, Sara and Bonettini, Nicol{\`o} and Bestagini, Paolo and Tubaro, Stefano},
  booktitle={2020 IEEE International Workshop on Information Forensics and Security (WIFS)},
  pages={1--6},
  year={2020},
  organization={IEEE}
}

@inproceedings{bayar2016,
  title={A deep learning approach to universal image manipulation detection using a new convolutional layer},
  author={Bayar, Belhassen and Stamm, Matthew C},
  booktitle={Proceedings of the 4th ACM workshop on information hiding and multimedia security (IH\&MMSec)},
  pages={5--10},
  year={2016}
}

@inproceedings{long2015learning,
  title={Learning transferable features with deep adaptation networks},
  author={Long, M. and Cao, Y. and Wang, J. and Jordan, M.},
  booktitle={International Conference on Machine Learning},
  pages={97--105},
  year={2015},
  organization={PMLR}
}


@inproceedings{DEFACTODataset, 
	author = {Ga{\"e}l Mahfoudi and Badr Tajini and Florent Retraint and Fr{\'e}d{\'e}ric Morain-Nicolier and Jean Luc Dugelay and Marc Pic},
	title={{DEFACTO:} Image and Face Manipulation Dataset},
	booktitle={27th European Signal Processing Conference (EUSIPCO 2019)},
	year={2019}
}

Citing our paper

If you wish to refer to our paper, please use the following BibTeX entry

@inproceedings{abecidan:hal-03374780,
  TITLE = {{Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics}},
  AUTHOR = {Abecidan, Rony and Itier, Vincent and Boulanger, J{\'e}r{\'e}mie and Bas, Patrick},
  URL = {https://hal.archives-ouvertes.fr/hal-03374780},
  BOOKTITLE = {{WIFS 2021 : IEEE International Workshop on Information Forensics and Security}},
  ADDRESS = {Montpellier, France},
  PUBLISHER = {{IEEE}},
  YEAR = {2021},
  MONTH = Dec,
  PDF = {https://hal.archives-ouvertes.fr/hal-03374780/file/2021_wifs.pdf},
  HAL_ID = {hal-03374780}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Pytorch Lightning 1.2k Jan 06, 2023
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022