Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Overview

Hand-Object Contact Prediction (BMVC2021)

This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" by Takuma Yagi, Md. Tasnimul Hasan and Yoichi Sato.

Requirements

  • Python 3.6+
  • ffmpeg
  • numpy
  • opencv-python
  • pillow
  • scikit-learn
  • python-Levenshtein
  • pycocotools
  • torch (1.8.1, 1.4.0- for flow generation)
  • torchvision (0.9.1)
  • mllogger
  • flownet2-pytorch

Caution: This repository requires ~100GB space for testing, ~200GB space for trusted label training and ~3TB space for full training.

Getting Started

Download the data

  1. Download EPIC-KITCHENS-100 videos from the official site. Since this dataset uses 480p frames and optical flows for training and testing you need to download the original videos. Place them to data/videos/PXX/PXX_XX.MP4.
  2. Download and extract the ground truth label and pseudo-label (11GB, only required for training) to data/.

Required videos are listed in configs/*_vids.txt.

Clone repository

git clone  --recursive https://github.com/takumayagi/hand_object_contact_prediction.git

Install FlowNet2 submodule

See the official repo to install the custom components.
Note that flownet2-pytorch won't work on latest pytorch version (confirmed working in 1.4.0).

Download and place the FlowNet2 pretrained model to pretrained/.

Extract RGB frames

The following code will extract 480p rgb frames to data/rgb_frames.
Note that we extract by 60 fps for EK-55 and 50 fps for EK-100 extension.

Validation & test set

for vid in `cat configs/valid_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done
for vid in `cat configs/test_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done

Trusted training set

for vid in `cat configs/trusted_train_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done

Noisy training set

# Caution: take up large space (~400GBs)
for vid in `cat configs/noisy_train_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done

Extract Flow frames

Similar to above, we extract flow images (in 16-bit png). This requires the annotation files since we only extract flows used in training/test to save space.

# Same for test, trusted_train, and noisy_train
# For trusted labels (test, valid, trusted_train)
# Don't forget to add --gt
for vid in `cat configs/valid_vids.txt`; do python preprocessing/extract_flow_frames.py $vid --gt; done

# For pseudo-labels
# Extracting flows for noisy_train will take up large space
for vid in `cat configs/noisy_train_vids.txt`; do python preprocessing/extract_flow_frames.py $vid; done

Demo (WIP)

Currently, we only have evaluation code against pre-processed input sequences (& bounding boxes). We're planning to release a demo code with track generation.

Test

Download the pretrained models to pretrained/.

Evaluation by test set:

python train.py --model CrUnionLSTMHO --eval --resume pretrained/proposed_model.pth
python train.py --model CrUnionLSTMHORGB --eval --resume pretrained/rgb_model.pth  # RGB baseline
python train.py --model CrUnionLSTMHOFlow --eval --resume pretrained/flow_model.pth  # Flow baseline

Visualization

python train.py --model CrUnionLSTMHO --eval --resume pretrained/proposed_model.pth --vis

This will produce a mp4 file under <output_dir>/vis_predictions/.

Training

Full training

Download the initial models and place them to pretrained/training/.

python train.py --model CrUnionLSTMHO --dir_name proposed --semisupervised --iter_supervision 5000 --iter_warmup 0 --plc --update_clean --init_delta 0.05  --asymp_labeled_flip --nb_iters 800000 --lr_step_list 40000 --save_model --finetune_noisy_net --delta_th 0.01 --iter_snapshot 20000 --iter_evaluation 20000 --min_clean_label_ratio 0.25

Trusted label training

You can train the "supervised" model by the following:

# Train
python train_v1.py --model UnionLSTMHO --dir_name supervised_trainval --train_vids configs/trusted_train_vids.txt --nb_iters 25000 --save_model --iter_warmup 5000 --supervised

# Trainval
python train_v1.py --model UnionLSTMHO --dir_name supervised_trainval --train_vids configs/trusted_trainval_vids.txt --nb_iters 25000 --save_model --iter_warmup 5000 --eval_vids configs/test_vids.txt --supervised

Optional: Training initial models

To train the proposed model (CrUnionLSTMHO), we first train a noisy/clean network before applying gPLC.

python train.py --model UnionLSTMHO --dir_name noisy_pretrain --train_vids configs/noisy_train_vids_55.txt --nb_iters 40000 --save_model --only_boundary
python train.py --model UnionLSTMHO --dir_name clean_pretrain --train_vids configs/trusted_train_vids.txt --nb_iters 25000 --save_model --iter_warmup 2500 --supervised

Tips

  • Set larger --nb_workers an --nb_eval_workers if you have enough number of CPUs.
  • You can set --modality to either rgb or flow if training single-modality models.

Citation

Takuma Yagi, Md. Tasnimul Hasan, and Yoichi Sato, Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction. In Proceedings of the British Machine Vision Conference. 2021.

@inproceedings{yagi2021hand,
  title = {Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction},
  author = {Yagi, Takuma and Hasan, Md. Tasnimul and Sato, Yoichi},
  booktitle = {Proceedings of the British Machine Vision Conference},
  year={2021}
}

When you use the data for training and evaluation, please also cite the original dataset (EPIC-KITCHENS Dataset).

Owner
Takuma Yagi
An apprentice to an action recognition comedian
Takuma Yagi
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022