Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

Related tags

Deep LearningMUSIQ
Overview

MUSIQ: Multi-Scale Image Quality Transformer

Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link: https://arxiv.org/abs/2108.05997)

This code doesn't exactly match what the paper describes.

  • It only works on the KonIQ-10k dataset. Or it works on the database which resolution is 1024(witdh) x 768(height).
  • Instead of using 5-layer Resnet as a backbone network, we use ResNet50 pretrained on ImageNet database.
  • We need to implement Earth Mover Distance (EMD) loss to train on other databases.
  • We additionally use ranking loss to improve the performance (we will upload the training code including ranking loss later)

The environmental settings are described below. (I cannot gaurantee if it works on other environments)

  • Pytorch=1.7.1 (with cuda 11.0)
  • einops=0.3.0
  • numpy=1.18.3
  • cv2=4.2.0
  • scipy=1.4.1
  • json=2.0.9
  • tqdm=4.45.0

Train & Validation

First, you need to download weights of ResNet50 pretrained on ImageNet database.

Second, you need to download the KonIQ-10k dataset.

  • Download the database from this website (http://database.mmsp-kn.de/koniq-10k-database.html)
  • set the database path in "train.py" (It is represented as "db_path" in "train.py")
  • Please check "koniq-10k.txt" is in "IQA_list" folder
  • "koniq-10k.txt" file includes [scene number / image name / ground truth score] information

After those settings, you can run the train & validation code by running "train.py"

  • python3 train.py (execution code)
  • This code works on single GPU. If you want to train this code in muti-gpu, you need to change this code
  • Options are all included in "train.py". So you should change the variable "config" in "train.py" image

Belows are the validation performance on KonIQ-10k database (I'm still training the code, so the results will be updated later)

  • SRCC: 0.9023 / PLCC: 0.9232 (after training 105 epochs)
  • If the codes are implemented exactly the same as the paper, the performance can be further improved

Inference

First, you need to specify variables in "inference.py"

  • dirname: root folder of test images
  • checkpoint: checkpoint file (trained on KonIQ-10k dataset)
  • result_score_txt: inference score will be saved on this txt file image

After those settings, you can run the inference code by running "inference.py"

  • python3 inference.py (execution code)

Acknolwdgements

We refer to the following website to implement the transformer (https://paul-hyun.github.io/transformer-01/)

一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022