An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Overview

code GPLv3 license release

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by providing an easy to use API, i.e., OWLOOP.

Although OWL and OOP paradigms have similar structure, there are some key differences between them; see this W3C publication for more details about the differences. Nonetheless, it is possible to use OWL along with its reasoning capabilities within applications developed in an OOP paradigm, by using the classic OWL-API. But, the usage of the classic OWL-API leaves your project with lots of boilerplate code. Therefore, the OWLOOP-API (built on top of OWL-API), reduces boilerplate code by enabling interaction with 'OWL entities' (i.e, Concept (also known as Class), Individual, Object property and Data property) as objects within the OOP paradigm. These objects are termed as Descriptors (i.e., ClassDescriptor, IndividualDescriptor, ObjectPropertyDescriptor and DataPropertyDescriptor). By using descriptor(s), OWLOOP synchronizes axioms (OWL2-DL axioms) between the OOP paradigm (your application's code) and the OWL paradigm (OWL ontology XML/RDF file(s)).

Example of a real-world system that used OWLOOP API:

This video (link) shows a smart home system recognising human activities. The system uses a network of multiple ontologies to recognise specific activities. The network of multiple ontologies was developed using OWLOOP API.

Table of Contents

  1. Reference to the publication
  2. Getting Started with OWLOOP
  3. Overview of important Java-classes (in OWLOOP) and their methods
  4. Wiki documentation
  5. Some details about OWLOOP dependencies
  6. Developers' message
  7. License

1. Reference to the Publication

OWLOOP API is a peer reviewed software published by Elsevier in its journal SoftwareX. The publication presents in detail the motivation for developing OWLOOP. Furthermore, it describes the design of the API and presents the API's usage with illustrative examples.

Please, cite this work as:

@article{OWLOOP-2021,
  title = {{OWLOOP}: {A} Modular {API} to Describe {OWL} Axioms in {OOP} Objects Hierarchies},
  author = {Luca Buoncompagni and Syed Yusha Kareem and Fulvio Mastrogiovanni},
  journal = {SoftwareX},
  volume = {17},
  pages = {100952},
  year = {2022},
  issn = {2352-7110},
  doi = {https://doi.org/10.1016/j.softx.2021.100952},
  url = {https://www.sciencedirect.com/science/article/pii/S2352711021001801}
}

2. Getting Started with OWLOOP

2.1. Prerequisites for your Operating System

2.2. Add OWLOOP dependencies to your project

First Step: Create a new project with Java as the programming language and Gradle as the build tool.

Second Step: Create a directory called lib and place the OWLOOP related jar files in it.

Third Step: Modify your build.gradle file, as follows:

  • Add flatDir { dirs 'lib' } within the repositories{} section, as shown below:
repositories {
    mavenCentral()

    flatDir {
        dirs 'lib'
    }
}
  • Add the required dependencies (i.e., owloop, amor and pellet), as shown below 👇
dependencies {
    // testCompile group: 'junit', name: 'junit', version: '4.12'

    implementation 'it.emarolab.amor:amor:2.2'
    implementation 'it.emarolab.owloop:owloop:2.1'
    implementation group: 'com.github.galigator.openllet', name: 'openllet-owlapi', version: '2.5.1'
}

It is normal that a warning like SLF4J: Class path contains multiple SLF4J bindings occurs.

Final Step: You are now ready to create/use OWL ontologies in your project/application 🔥 , by using OWLOOP descriptors in your code!.

2.3. Use OWLOOP in your project

  • This is an example code that shows how to create an OWL file and add axioms to it.
import it.emarolab.amor.owlInterface.OWLReferences;
import it.emarolab.owloop.core.Axiom;
import it.emarolab.owloop.descriptor.utility.classDescriptor.FullClassDesc;
import it.emarolab.owloop.descriptor.utility.individualDescriptor.FullIndividualDesc;
import it.emarolab.owloop.descriptor.utility.objectPropertyDescriptor.FullObjectPropertyDesc;

public class someClassInMyProject {

    public static void main(String[] args) {

        // Disabling 'internal logs' (so that our console is clean)
        Axiom.Descriptor.OntologyReference.activateAMORlogging(false);

        // Creating an object that is 'a reference to an ontology'
        OWLReferences ontoRef = Axiom.Descriptor.OntologyReference.newOWLReferencesCreatedWithPellet(
                "robotAtHomeOntology",
                "src/main/resources/robotAtHomeOntology.owl",
                "http://www.semanticweb.org/robotAtHomeOntology",
                true
        );

        // Creating some 'classes in the ontology'
        FullClassDesc location = new FullClassDesc("LOCATION", ontoRef);
        location.addSubClass("CORRIDOR");
        location.addSubClass("ROOM");
        location.writeAxioms();
        FullClassDesc robot = new FullClassDesc("ROBOT", ontoRef);
        robot.addDisjointClass("LOCATION");
        robot.writeAxioms();

        // Creating some 'object properties in the ontology'
        FullObjectPropertyDesc isIn = new FullObjectPropertyDesc("isIn", ontoRef);
        isIn.addDomainClassRestriction("ROBOT");
        isIn.addRangeClassRestriction("LOCATION");
        isIn.writeAxioms();
        FullObjectPropertyDesc isLinkedTo = new FullObjectPropertyDesc("isLinkedTo", ontoRef);
        isLinkedTo.addDomainClassRestriction("CORRIDOR");
        isLinkedTo.addRangeClassRestriction("ROOM");
        isLinkedTo.writeAxioms();

        // Creating some 'individuals in the ontology'
        FullIndividualDesc corridor1 = new FullIndividualDesc("Corridor1", ontoRef);
        corridor1.addObject("isLinkedTo", "Room1");
        corridor1.addObject("isLinkedTo", "Room2");
        corridor1.writeAxioms();
        FullIndividualDesc robot1 = new FullIndividualDesc("Robot1", ontoRef);
        robot1.addObject("isIn", "Room1");
        robot1.writeAxioms();
        
        // Saving axioms from in-memory ontology to the the OWL file located in 'src/main/resources'
        ontoRef.saveOntology();
    }
}
  • After running the above code, the OWL file robotAtHomeOntology gets saved in src/main/resources. We can open the OWL file in Protege and view the ontology.

3. Overview of important Java-classes (in OWLOOP) and their methods

Java-classes methods
Path: OWLOOP/src/.../owloop/core/

This path contains, all core Java-classes. Among them, one in particular is immediately useful, i.e., OntologyReference. It allows to create/load/save an OWL ontology file.
The following method allows to enable/disable display of internal logging:

activateAMORlogging()
The following methods allow to instantiate an object of the Java-class OWLReferences:

newOWLReferencesCreatedWithPellet()
newOWLReferencesFromFileWithPellet()
newOWLReferencesFromWebWithPellet()
The object of Java-class OWLReferences, offers the following methods:

#0000FFsaveOntology()
#0000FFsynchronizeReasoner()
#0000FFload() // is hidden and used internally
Path: OWLOOP/src/.../owloop/descriptor/utility/

This path contains the directories that contain all Java-classes that are (as we call them) descriptors. The directories are the following:
/classDescriptor
/dataPropertyDescriptor
/objectPropertyDescriptor
/individualDescriptor.
The object of a Descriptor, offers the following methods:

#f03c15add...()
#f03c15remove...()
#f03c15build...()
#f03c15get...()
#f03c15query...()
#f03c15writeAxioms()
#f03c15readAxioms()
#f03c15reason()
#f03c15saveOntology()

4. Wiki documentation

The OWLOOP API's core aspects are described in this repository's wiki:

  • Structure of the OWLOOP API project.

  • JavaDoc of the OWLOOP API project.

  • What is a Descriptor in OWLOOP?

  • Code examples that show how to:

    • Construct a type of descriptor.

    • Add axioms to an ontology by using descriptors.

    • Infer some knowledge (i.e., axioms) from the axioms already present within an ontology by using descriptors. This example also highlights the use of the build() method.

    • Remove axioms from an ontology by using descriptors.

5. Some details about OWLOOP dependencies

Please use Gradle as the build tool for your project, and include the following dependencies in your project's build.gradle file:

  • aMOR (latest release is amor-2.2): a Multi-Ontology Reference library is based on OWL-API and it provides helper functions to OWLOOP.
    • OWL-API: a Java API for creating, manipulating and serialising OWL Ontologies. We have included owlapi-distribution-5.0.5 within amor-2.2.
  • OWLOOP (latest release is owloop-2.2): an API that enables easy manipulation of OWL (Ontology Web Language) ontologies from within an OOP (Object Oriented Programming) paradigm.
    • Pellet: an open source OWL 2 DL reasoner. We have included openllet-owlapi-2.5.1 within owloop-2.2.

6. Developers' message

Feel free to contribute to OWLOOP by sharing your thoughts and ideas, raising issues (if found) and providing bug-fixes. For any information or support, please do not hesitate to contact us through this Github repository or by email.

Developed by [email protected] and [email protected] under the supervision of [email protected].

7. License

OWLOOP is under the license: GNU General Public License v3.0

You might also like...
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social learning coefficients and maximum velocity of the particle.

A programming language written with python
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

A general-purpose programming language, focused on simplicity, safety and stability.
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ranging from simulation engineering up to agent development, training and deployment.

A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Releases(2.1)
Owner
TheEngineRoom-UniGe
Human Robot Interaction and Artificial Intelligence Lab in Genoa, Italy.
TheEngineRoom-UniGe
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022