Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Related tags

Deep Learningabcd
Overview

Action-Based Conversations Dataset (ABCD)

This respository contains the code and data for ABCD (Chen et al., 2021)

Introduction

Whereas existing goal-oriented dialogue datasets focus mainly on identifying user intents, customer interactions in reality often involve agents following multi-step procedures derived from explicitly-defined guidelines. For example, in a online shopping scenario, a customer might request a refund for a past purchase. However, before honoring such a request, the agent should check the company policies to see if a refund is warranted. It is very likely that the agent will need to verify the customer's identity and check that the purchase was made within a reasonable timeframe.

To study dialogue systems in more realistic settings, we introduce the Action-Based Conversations Dataset (ABCD), where an agent's actions must be balanced between the desires expressed by the customer and the constraints set by company policies. The dataset contains over 10K human-to-human dialogues with 55 distinct user intents requiring unique sequences of actions to achieve task success. We also design a new technique called Expert Live Chat for collecting data when there are two unequal users engaging in real-time conversation. Please see the paper for more details.

Paper link: https://arxiv.org/abs/2104.00783

Blog link: https://www.asapp.com/blog/action-based-conversations-dataset/

Agent Dashboard

Customer Site

Usage

All code is run by executing the corresponding command within the shell script run.sh, which will kick off the data preparation and training within main.py. To use, first unzip the file found in data/abcd_v1.1.json.gz using the gunzip command (or similar). Then comment or uncomment the appropriate lines in the shell script to get desired behavior. Finally, enter sh run.sh into the command line to get started. Use the --help option of argparse for flag details or read through the file located within utils/arguments.py.

Preparation

Raw data will be loaded from the data folder and prepared into features that are placed into Datasets. If this has already occured, then the system will instead read in the prepared features from cache.

If running CDS for the first time, uncomment out the code within the run script to execute embed.py which will prepare the utterances for ranking.

Training

To specify the task for training, simply use the --task option with either ast or cds, for Action State Tracking and Cascading Dialogue Success respectively. Options for different model types are bert, albert and roberta. Loading scripts can be tuned to offer various other behaviors.

Evaluation

Activate evaluation using the --do-eval flag. By default, run.sh will perform cascading evaluation. To include ablations, add the appropriate options of --use-intent or --use-kb.

Data

The preprocessed data is found in abcd_v1.1.json which is a dictionary with keys of train, dev and test. Each split is a list of conversations, where each conversation is a dict containing:

  • convo_id: a unique conversation identifier
  • scenario: the ground truth scenario used to generate the prompt
  • original: the raw conversation of speaker and utterances as a list of tuples
  • delexed: the delexicalized conversation used for training and evaluation, see below for details

We provide the delexed version so new models performing the same tasks have comparable pre-processing. The original data is also provided in case you want to use the utterances for some other purpose.

For a quick preview, a small sample of chats is provided to help get started. Concretely, abcd_sample.json is a list containing three random conversations from the training set.

Scenario

Each scene dict contains details about the customer setup along with the underlying flow and subflow information an agent should use to address the customer concern. The components are:

  • Personal: personal data related to the (fictional) customer including account_id, customer name, membership level, phone number, etc.
  • Order: order info related to what the customer purchased or would like to purchase. Includes address, num_products, order_id, product names, and image info
  • Product: product details if applicable, includes brand name, product type and dollar amount
  • Flow and Subflow: these represent the ground truth user intent. They are used to generate the prompt, but are not shown directly the customer. The job of the agent is to infer this (latent) intent and then match against the Agent Guidelines to resolve the customer issue.

Guidelines

The agent guidelines are offered in their original form within Agent Guidelines for ABCD. This has been transformed into a formatted document for parsing by a model within data/guidelines.json. The intents with their button actions about found within kb.json. Lastly, the breakdown of all flows, subflows, and actions are found within ontology.json.

Conversation

Each conversation is made up of a list of turns. Each turn is a dict with five parts:

  • Speaker: either "agent", "customer" or "action"
  • Text: the utterance of the agent/customer or the system generated response of the action
  • Turn_Count: integer representing the turn number, starting from 1
  • Targets : list of five items representing the subtask labels
    • Intent Classification (text) - 55 subflow options
    • Nextstep Selection (text) - take_action, retrieve_utterance or end_conversation; 3 options
    • Action Prediction (text) - the button clicked by the agent; 30 options
    • Value Filling (list) - the slot value(s) associated with the action above; 125 options
    • Utterance Ranking (int) - target position within list of candidates; 100 options
  • Candidates: list of utterance ids representing the pool of 100 candidates to choose from when ranking. The surface form text can be found in utterances.json where the utt_id is the index. Only applicable when the current turn is a "retrieve_utterance" step.

In contrast to the original conversation, the delexicalized version will replace certain segments of text with special tokens. For example, an utterance might say "My Account ID is 9KFY4AOHGQ". This will be changed into "my account id is <account_id>".

Contact

Please email [email protected] for questions or feedback.

Citation

@inproceedings{chen2021abcd,
    title = "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems",
    author = "Chen, Derek and
        Chen, Howard and
        Yang, Yi and
        Lin, Alex and
        Yu, Zhou",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for 
    	Computational Linguistics: Human Language Technologies, {NAACL-HLT} 2021",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.naacl-main.239",
    pages = "3002--3017"
}
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022