ServiceX Transformer that converts flat ROOT ntuples into columnwise data

Related tags

Deep Learningssl-hep
Overview

ServiceX_Uproot_Transformer

Badge

ServiceX Transformer that converts flat ROOT ntuples into columnwise data

Usage

You can invoke the transformer from the command line. For example:

> docker run --rm -it sslhep/servicex_func_adl_uproot_transformer:latest python transformer.py --help
usage: transformer.py [-h] [--brokerlist BROKERLIST] [--topic TOPIC]
                      [--chunks CHUNKS] [--tree TREE] [--attrs ATTR_NAMES]
                      [--path PATH] [--limit LIMIT]
                      [--result-destination {kafka,object-store,output-dir}]
                      [--output-dir OUTPUT_DIR]
                      [--result-format {arrow,parquet,root-file}]
                      [--max-message-size MAX_MESSAGE_SIZE]
                      [--rabbit-uri RABBIT_URI] [--request-id REQUEST_ID]

Uproot Transformer

optional arguments:
  -h, --help            show this help message and exit
  --brokerlist BROKERLIST
                        List of Kafka broker to connect to
  --topic TOPIC         Kafka topic to publish arrays to
  --chunks CHUNKS       Arrow Buffer Chunksize
  --tree TREE           Tree from which columns will be inspected
  --attrs ATTR_NAMES    List of attributes to extract
  --path PATH           Path to single Root file to transform
  --limit LIMIT         Max number of events to process
  --result-destination {kafka,object-store,output-dir}
                        kafka, object-store
  --output-dir OUTPUT_DIR
                        Local directory to output results
  --result-format {arrow,parquet,root-file}
                        arrow, parquet, root-file
  --max-message-size MAX_MESSAGE_SIZE
                        Max message size in megabytes
  --rabbit-uri RABBIT_URI
  --request-id REQUEST_ID
                        Request ID to read from queue

You will need an X509 proxy available as a mountable volume. The X509 Secret container can do using your credentials and cert:

docker run --rm \
    --mount type=bind,source=$HOME/.globus,readonly,target=/etc/grid-certs \
    --mount type=bind,source="$(pwd)"/secrets/secrets.txt,target=/servicex/secrets.txt \
    --mount type=volume,source=x509,target=/etc/grid-security \
    --name=x509-secrets sslhep/x509-secrets:latest

Development

 python3 -m pip install -r requirements.txt
 python3 -m pip install --index-url https://test.pypi.org/simple/ --no-deps servicex
Owner
Vis
Developer, Network Engineer, Copy Paste Expert. Mostly working on sort of defined networks (SDN). I pick the packets up and put them down
Vis
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022