Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Overview

OoD_Gen-Chest_Xray

Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Requirements (Installations)

Install the following libraries/packages with pip

torch 
torchvision
torchxrayvsion

Four (4) Pathologies, Four (4) Datasets, & 12-Fold Cross-Validation

There are 12 different training, validation and test settings generated by combining 4 different Chest X-ray datasets (NIH ChestX-ray8 dataset, PadChest dataset, CheXpert, and MIMIC-CXR). These 12 settings are broken down into 6 splits (ranging from 0 to 5) that can be called by passing the argument --split=<split>. For each split, you have the option to choose between 2 validation datasets by passing the argument --valid_data=<name of valid dataset>. The dataset names are condensed as short strings: "nih"= NIH ChestX-ray8 dataset, "pc" = PadChest dataset, "cx" = CheXpert, and "mc" = MIMIC-CXR.
For each setting, we compute the ROC-AUC for the following chest x-ray pathologies (labels): Cardiomegaly, Pneumonia, Effusion, Edema, Atelectasis, Consolidation, and Pneumothorax.

For each split, you train on two (2) datasets, validate on one (1) and test on the remaining one (1).
The chest.py file contains code to run the models in this study.

To finetune or perform feature extraction with ImageNet weights pass the --pretrained and --feat_extract arguments respectively

Train Using Baseline Model (Merged Datasets)

To train a DenseNet-121 Baseline model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --merge_train --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

Note that for the first split, PadChest is automatically selected as the test_data, when you pass MIMIC-CXR as the validation data, and vice versa.

Train Balanced Mini-Batch Sampling

To train a DenseNet-121 Balanced Mini-Batch Sampling model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

and always pass --weight_decay=0.0

If no model architecture is specified, the code trains all the following architectures: resnet50, and densenet121.

Inference using the XRV model

To perform inference using the DenseNet model with pretrained weights from torchxrayvision, run the following line of code:

python xrv_test.py --dataset_name pc --seed 0

Note that you can pass any of the arguments pc, mc, cx or nih to --dataset_name to run inference on PadChest, MIMIC-CXR, CheXpert and ChestX-Ray8 respectively.

Owner
Enoch Tetteh
Alumna: 1) African Masters in Machine Intelligence. 2) MILA - QUEBEC AI Institute Focus - computer vision and language processing.
Enoch Tetteh
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022