Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Overview

OoD_Gen-Chest_Xray

Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Requirements (Installations)

Install the following libraries/packages with pip

torch 
torchvision
torchxrayvsion

Four (4) Pathologies, Four (4) Datasets, & 12-Fold Cross-Validation

There are 12 different training, validation and test settings generated by combining 4 different Chest X-ray datasets (NIH ChestX-ray8 dataset, PadChest dataset, CheXpert, and MIMIC-CXR). These 12 settings are broken down into 6 splits (ranging from 0 to 5) that can be called by passing the argument --split=<split>. For each split, you have the option to choose between 2 validation datasets by passing the argument --valid_data=<name of valid dataset>. The dataset names are condensed as short strings: "nih"= NIH ChestX-ray8 dataset, "pc" = PadChest dataset, "cx" = CheXpert, and "mc" = MIMIC-CXR.
For each setting, we compute the ROC-AUC for the following chest x-ray pathologies (labels): Cardiomegaly, Pneumonia, Effusion, Edema, Atelectasis, Consolidation, and Pneumothorax.

For each split, you train on two (2) datasets, validate on one (1) and test on the remaining one (1).
The chest.py file contains code to run the models in this study.

To finetune or perform feature extraction with ImageNet weights pass the --pretrained and --feat_extract arguments respectively

Train Using Baseline Model (Merged Datasets)

To train a DenseNet-121 Baseline model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --merge_train --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

Note that for the first split, PadChest is automatically selected as the test_data, when you pass MIMIC-CXR as the validation data, and vice versa.

Train Balanced Mini-Batch Sampling

To train a DenseNet-121 Balanced Mini-Batch Sampling model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

and always pass --weight_decay=0.0

If no model architecture is specified, the code trains all the following architectures: resnet50, and densenet121.

Inference using the XRV model

To perform inference using the DenseNet model with pretrained weights from torchxrayvision, run the following line of code:

python xrv_test.py --dataset_name pc --seed 0

Note that you can pass any of the arguments pc, mc, cx or nih to --dataset_name to run inference on PadChest, MIMIC-CXR, CheXpert and ChestX-Ray8 respectively.

Owner
Enoch Tetteh
Alumna: 1) African Masters in Machine Intelligence. 2) MILA - QUEBEC AI Institute Focus - computer vision and language processing.
Enoch Tetteh
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022