Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Overview

OoD_Gen-Chest_Xray

Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Requirements (Installations)

Install the following libraries/packages with pip

torch 
torchvision
torchxrayvsion

Four (4) Pathologies, Four (4) Datasets, & 12-Fold Cross-Validation

There are 12 different training, validation and test settings generated by combining 4 different Chest X-ray datasets (NIH ChestX-ray8 dataset, PadChest dataset, CheXpert, and MIMIC-CXR). These 12 settings are broken down into 6 splits (ranging from 0 to 5) that can be called by passing the argument --split=<split>. For each split, you have the option to choose between 2 validation datasets by passing the argument --valid_data=<name of valid dataset>. The dataset names are condensed as short strings: "nih"= NIH ChestX-ray8 dataset, "pc" = PadChest dataset, "cx" = CheXpert, and "mc" = MIMIC-CXR.
For each setting, we compute the ROC-AUC for the following chest x-ray pathologies (labels): Cardiomegaly, Pneumonia, Effusion, Edema, Atelectasis, Consolidation, and Pneumothorax.

For each split, you train on two (2) datasets, validate on one (1) and test on the remaining one (1).
The chest.py file contains code to run the models in this study.

To finetune or perform feature extraction with ImageNet weights pass the --pretrained and --feat_extract arguments respectively

Train Using Baseline Model (Merged Datasets)

To train a DenseNet-121 Baseline model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --merge_train --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

Note that for the first split, PadChest is automatically selected as the test_data, when you pass MIMIC-CXR as the validation data, and vice versa.

Train Balanced Mini-Batch Sampling

To train a DenseNet-121 Balanced Mini-Batch Sampling model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

and always pass --weight_decay=0.0

If no model architecture is specified, the code trains all the following architectures: resnet50, and densenet121.

Inference using the XRV model

To perform inference using the DenseNet model with pretrained weights from torchxrayvision, run the following line of code:

python xrv_test.py --dataset_name pc --seed 0

Note that you can pass any of the arguments pc, mc, cx or nih to --dataset_name to run inference on PadChest, MIMIC-CXR, CheXpert and ChestX-Ray8 respectively.

Owner
Enoch Tetteh
Alumna: 1) African Masters in Machine Intelligence. 2) MILA - QUEBEC AI Institute Focus - computer vision and language processing.
Enoch Tetteh
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022