Model Zoo for AI Model Efficiency Toolkit

Overview

Qualcomm Innovation Center, Inc.

Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance. Results demonstrate that quantized models can provide good accuracy, comparable to floating point models. Together with results, we also provide recipes for users to quantize floating-point models using the AI Model Efficiency ToolKit (AIMET).

Table of Contents

Introduction

Quantized inference is significantly faster than floating-point inference, and enables models to run in a power-efficient manner on mobile and edge devices. We use AIMET, a library that includes state-of-the-art techniques for quantization, to quantize various models available in TensorFlow and PyTorch frameworks. The list of models is provided in the sections below.

An original FP32 source model is quantized either using post-training quantization (PTQ) or Quantization-Aware-Training (QAT) technique available in AIMET. Example scripts for evaluation are provided for each model. When PTQ is needed, the evaluation script performs PTQ before evaluation. Wherever QAT is used, the fine-tuned model checkpoint is also provided.

Tensorflow Models

Model Zoo

Network Model Source [1] Floating Pt (FP32) Model [2] Quantized Model [3] Results [4] Documentation
ResNet-50 (v1) GitHub Repo Pretrained Model See Documentation (ImageNet) Top-1 Accuracy
FP32: 75.21%
INT8: 74.96%
ResNet50.md
MobileNet-v2-1.4 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 75%
INT8: 74.21%
MobileNetV2.md
EfficientNet Lite GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 74.93%
INT8: 74.99%
EfficientNetLite.md
SSD MobileNet-v2 GitHub Repo Pretrained Model See Example (COCO) Mean Avg. Precision (mAP)
FP32: 0.2469
INT8: 0.2456
SSDMobileNetV2.md
RetinaNet GitHub Repo Pretrained Model See Example (COCO) mAP
FP32: 0.35
INT8: 0.349
Detailed Results
RetinaNet.md
Pose Estimation Based on Ref. Based on Ref. Quantized Model (COCO) mAP
FP32: 0.383
INT8: 0.379,
Mean Avg.Recall (mAR)
FP32: 0.452
INT8: 0.446
PoseEstimation.md
SRGAN GitHub Repo Pretrained Model See Example (BSD100) PSNR/SSIM
FP32: 25.45/0.668
INT8: 24.78/0.628
INT8W/INT16Act.: 25.41/0.666
Detailed Results
SRGAN.md

[1] Original FP32 model source
[2] FP32 model checkpoint
[3] Quantized Model: For models quantized with post-training technique, refers to FP32 model which can then be quantized using AIMET. For models optimized with QAT, refers to model checkpoint with fine-tuned weights. 8-bit weights and activations are typically used. For some models, 8-bit weights and 16-bit activations (INT8W/INT16Act.) are used to further improve performance of post-training quantization.
[4] Results comparing float and quantized performance
[5] Script for quantized evaluation using the model referenced in “Quantized Model” column

Detailed Results

RetinaNet

(COCO dataset)

Average Precision/Recall @[ IoU | area | maxDets] FP32 INT8
Average Precision @[ 0.50:0.95 | all | 100 ] 0.350 0.349
Average Precision @[ 0.50 | all | 100 ] 0.537 0.536
Average Precision @[ 0.75 | all | 100 ] 0.374 0.372
Average Precision @[ 0.50:0.95 | small | 100 ] 0.191 0.187
Average Precision @[ 0.50:0.95 | medium | 100 ] 0.383 0.381
Average Precision @[ 0.50:0.95 | large | 100 ] 0.472 0.472
Average Recall @[ 0.50:0.95 | all | 1 ] 0.306 0.305
Average Recall @[0.50:0.95 | all | 10 ] 0.491 0.490
Average Recall @[ 0.50:0.95 | all |100 ] 0.533 0.532
Average Recall @[ 0.50:0.95 | small | 100 ] 0.345 0.341
Average Recall @[ 0.50:0.95 | medium | 100 ] 0.577 0.577
Average Recall @[ 0.50:0.95 | large | 100 ] 0.681 0.679

SRGAN

Model Dataset PSNR SSIM
FP32 Set5/Set14/BSD100 29.17/26.17/25.45 0.853/0.719/0.668
INT8/ACT8 Set5/Set14/BSD100 28.31/25.55/24.78 0.821/0.684/0.628
INT8/ACT16 Set5/Set14/BSD100 29.12/26.15/25.41 0.851/0.719/0.666

PyTorch Models

Model Zoo

Network Model Source [1] Floating Pt (FP32) Model [2] Quantized Model [3] Results [4] Documentation
MobileNetV2 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 71.67%
INT8: 71.14%
MobileNetV2.md
EfficientNet-lite0 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 75.42%
INT8: 74.44%
EfficientNet-lite0.md
DeepLabV3+ GitHub Repo Pretrained Model Quantized Model (PascalVOC) mIOU
FP32: 72.62%
INT8: 72.22%
DeepLabV3.md
MobileNetV2-SSD-Lite GitHub Repo Pretrained Model Quantized Model (PascalVOC) mAP
FP32: 68.7%
INT8: 68.6%
MobileNetV2-SSD-lite.md
Pose Estimation Based on Ref. Based on Ref. Quantized Model (COCO) mAP
FP32: 0.364
INT8: 0.359
mAR
FP32: 0.436
INT8: 0.432
PoseEstimation.md
SRGAN GitHub Repo Pretrained Model (older version from here) See Example (BSD100) PSNR/SSIM
FP32: 25.51/0.653
INT8: 25.5/0.648
Detailed Results
SRGAN.md
DeepSpeech2 GitHub Repo Pretrained Model See Example (Librispeech Test Clean) WER
FP32
9.92%
INT8: 10.22%
DeepSpeech2.md

[1] Original FP32 model source
[2] FP32 model checkpoint
[3] Quantized Model: For models quantized with post-training technique, refers to FP32 model which can then be quantized using AIMET. For models optimized with QAT, refers to model checkpoint with fine-tuned weights. 8-bit weights and activations are typically used. For some models, 8-bit weights and 16-bit weights are used to further improve performance of post-training quantization.
[4] Results comparing float and quantized performance
[5] Script for quantized evaluation using the model referenced in “Quantized Model” column

Detailed Results

SRGAN Pytorch

Model Dataset PSNR SSIM
FP32 Set5/Set14/BSD100 29.93/26.58/25.51 0.851/0.709/0.653
INT8 Set5/Set14/BSD100 29.86/26.59/25.55 0.845/0.705/0.648

Examples

Install AIMET

Before you can run the example script for a specific model, you need to install the AI Model Efficiency ToolKit (AIMET) software. Please see this Getting Started page for an overview. Then install AIMET and its dependencies using these Installation instructions.

NOTE: To obtain the exact version of AIMET software that was used to test this model zoo, please install release 1.13.0 when following the above instructions.

Running the scripts

Download the necessary datasets and code required to run the example for the model of interest. The examples run quantized evaluation and if necessary apply AIMET techniques to improve quantized model performance. They generate the final accuracy results noted in the table above. Refer to the Docs for TensorFlow or PyTorch folder to access the documentation and procedures for a specific model.

Team

AIMET Model Zoo is a project maintained by Qualcomm Innovation Center, Inc.

License

Please see the LICENSE file for details.

Comments
  • Added PyTorch FFNet model, added INT4 to several models

    Added PyTorch FFNet model, added INT4 to several models

    Added the following new model: PyTorch FFNet Added INT4 quantization support to the following models:

    • Pytorch Classification (regnet_x_3_2gf, resnet18, resnet50)
    • PyTorch HRNet Posenet
    • PyTorch HRNet
    • PyTorch EfficientNet Lite0
    • PyTorch DeeplabV3-MobileNetV2

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • Added TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models

    Added TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models

    Added two new models - TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models Fixed TF version for 2 models in README file Minor updates to Tensorflow EfficientNet Lite-0 doc and PyTorch ssd_mobilenetv2 script

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • Updated post estimation evaluation code and documentation for updated…

    Updated post estimation evaluation code and documentation for updated…

    … model .pth file with weights state-dict Fixed model loading problem by including model definition in pose_estimation_quanteval.py Add Quantizer Op Assumptions to Pose Estimation document

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • error when run the pose estimation example

    error when run the pose estimation example

    $ python3.6 pose_estimation_quanteval.py pe_weights.pth ./data/

    2022-05-24 22:37:22,500 - root - INFO - AIMET defining network with shared weights Traceback (most recent call last): File "pose_estimation_quanteval.py", line 700, in pose_estimation_quanteval(args) File "pose_estimation_quanteval.py", line 687, in pose_estimation_quanteval sim = quantsim.QuantizationSimModel(model, dummy_input=(1, 3, 128, 128), quant_scheme=args.quant_scheme) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/quantsim.py", line 157, in init self.connected_graph = ConnectedGraph(self.model, dummy_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 132, in init self._construct_graph(model, model_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 254, in _construct_graph module_tensor_shapes_map = ConnectedGraph._generate_module_tensor_shapes_lookup_table(model, model_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 244, in _generate_module_tensor_shapes_lookup_table run_hook_for_layers_with_given_input(model, model_input, forward_hook, leaf_node_only=False) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/utils.py", line 277, in run_hook_for_layers_with_given_input _ = model(*input_tensor) File "/home/jlchen/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1071, in _call_impl result = forward_call(*input, **kwargs) TypeError: forward() takes 2 positional arguments but 5 were given

    opened by sundyCoder 0
  • I try to quantize deepspeech demo,but error happend

    I try to quantize deepspeech demo,but error happend

    ImportError: /home/mi/anaconda3/envs/aimet/lib/python3.7/site-packages/aimet_common/x86_64-linux-gnu/aimet_tensor_quantizer-0.0.0-py3.7-linux-x86_64.egg/AimetTensorQuantizer.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _ZNK2at6Tensor8data_ptrIfEEPT_v

    platform:Ubuntu 18.04 GPU: nvidia 2070 CUDA:11.1 pytorch python:3.7

    opened by fmbao 0
  • Request for the MobileNet-V1-1.0 quantized (INT8) model.

    Request for the MobileNet-V1-1.0 quantized (INT8) model.

    Thank you for sharing these valuable models. I'd like to evaluate and look into the 'MobileNet-v1-1.0' model quantized by the DFQ. I'd appreciate it if you could provide the quantized MobileNet-v1-1.0 model either in TF or in PyTorch.

    opened by yschoi-dev 0
  • What's the runtime and AI Framework for DeepSpeech2?

    What's the runtime and AI Framework for DeepSpeech2?

    For DeepSpeech2, may I know what's the runtime for it's quantized (INT8 ) model, Hexagan DSP, NPU or others? And what's the AI framework, SNPE, Hexagan NN or others? Thanks~

    opened by sunfangxun 0
  • Unable to replicate DeepLabV3 Pytorch Tutorial numbers

    Unable to replicate DeepLabV3 Pytorch Tutorial numbers

    I've been working through the DeepLabV3 Pytorch tutorial, which can be founded here: https://github.com/quic/aimet-model-zoo/blob/develop/zoo_torch/Docs/DeepLabV3.md.

    However, when running the evaluation script using optimized checkpoint, I am unable to replicate the mIOU result that was listed in the table. The number that I got was 0.67 while the number reported by Qualcomm was 0.72. I was wondering if anyone have had this issue before and how to resolve it ?

    opened by LLNLanLeN 3
Releases(repo_restructured_1)
Owner
Qualcomm Innovation Center
Qualcomm Innovation Center
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022