QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

Overview

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

Environment

  • Tested on Ubuntu 14.04 64bit and 16.04 64bit

Installation

# disable ptrace_scope for PIN
$ echo 0|sudo tee /proc/sys/kernel/yama/ptrace_scope

# install z3 and system deps
$ ./setup.sh

# install using virtual env
$ virtualenv venv
$ source venv/bin/activate
$ pip install .

Installation using Docker

# disable ptrace_scope for PIN
$ echo 0|sudo tee /proc/sys/kernel/yama/ptrace_scope

# build docker image
$ docker build -t qsym ./

# run docker image
$ docker run --cap-add=SYS_PTRACE -it qsym /bin/bash

Installation using vagrant

Since QSYM is dependent on underlying kernel because of its old PIN, we decided to provide a convenient way to install QSYM with VM. Please take a look our vagrant directory.

Run hybrid fuzzing with AFL

# require to set the following environment variables
#   AFL_ROOT: afl directory (http://lcamtuf.coredump.cx/afl/)
#   INPUT: input seed files
#   OUTPUT: output directory
#   AFL_CMDLINE: command line for a testing program for AFL (ASAN + instrumented)
#   QSYM_CMDLINE: command line for a testing program for QSYM (Non-instrumented)

# run AFL master
$ $AFL_ROOT/afl-fuzz -M afl-master -i $INPUT -o $OUTPUT -- $AFL_CMDLINE
# run AFL slave
$ $AFL_ROOT/afl-fuzz -S afl-slave -i $INPUT -o $OUTPUT -- $AFL_CMDLINE
# run QSYM
$ bin/run_qsym_afl.py -a afl-slave -o $OUTPUT -n qsym -- $QSYM_CMDLINE

Run for testing

$ cd tests
$ python build.py
$ python -m pytest -n $(nproc)

Troubleshooting

If you find that you can't get QSYM to work and you get the undefined symbol: Z3_is_seq_sort error in pin.log file, please make sure that you compile and make the target when you're in the virtualenv (env) environment. When you're out of this environment and you compile the target, QSYM can't work with the target binary and issues the mentioned error in pin.log file. This will save your time a lot to compile and make the target from env and then run QSYM on the target, then QSYM will work like a charm!

Authors

Publications

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

@inproceedings{yun:qsym,
  title        = {{QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing}},
  author       = {Insu Yun and Sangho Lee and Meng Xu and Yeongjin Jang and Taesoo Kim},
  booktitle    = {Proceedings of the 27th USENIX Security Symposium (Security)},
  month        = aug,
  year         = 2018,
  address      = {Baltimore, MD},
}
Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023