Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

Overview

TimeCycle

Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework, in version PyTorch 0.4 with Python 2. It also runs smoothly with PyTorch 1.0. This repo includes the training code for learning semi-dense correspondence from unlabeled videos, and testing code for applying this correspondence on segmentation mask tracking in videos.

Citation

If you use our code in your research or wish to refer to the baseline results, please use the following BibTeX entry.

@inproceedings{CVPR2019_CycleTime,
    Author = {Xiaolong Wang and Allan Jabri and Alexei A. Efros},
    Title = {Learning Correspondence from the Cycle-Consistency of Time},
    Booktitle = {CVPR},
    Year = {2019},
}

Model and Result

Our trained model can be downloaded from here. The tracking performance on DAVIS-2017 for this model (without training on DAVIS-2017) is:

cropSize J_mean J_recall J_decay F_mean F_recall F_decay
320 x 320 0.419 0.409 0.272 0.394 0.336 0.328
400 x 400 0.430 0.437 0.296 0.426 0.413 0.356
480 x 480 0.464 0.500 0.332 0.500 0.480 0.379

Note that one can easily improve the results in test time by increasing the input image size "cropSize" in the script. The training and testing procedures for this model are described as follows.

Converting Our Model to Standard Pytorch ResNet-50

Please see convert_model.ipynb for converting our model here to standard Pytorch ResNet-50 model format.

Dataset Preparation

Please read DATASET.md for downloading and preparing the VLOG dataset for training and DAVIS dataset for testing.

Training

Replace the input list in train_video_cycle_simple.py in the home folder as:

    params['filelist'] = 'YOUR_DATASET_FOLDER/vlog_frames_12fps.txt'

Then run the following code:

    python train_video_cycle_simple.py --checkpoint pytorch_checkpoints/release_model_simple

Testing

Replace the input list in test_davis.py in the home folder as:

    params['filelist'] = 'YOUR_DATASET_FOLDER/davis/DAVIS/vallist.txt'

Set up the dataset path YOUR_DATASET_FOLDER in run_test.sh . Then run the testing and evaluation code together:

    sh run_test.sh

Acknowledgements

weakalign by Ignacio Rocco, Relja Arandjelović and Josef Sivic.

inflated_convnets_pytorch by Yana Hasson.

pytorch-classification by Wei Yang.

Owner
Xiaolong Wang
Assistant Professor, UC San Diego
Xiaolong Wang
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023