[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Overview

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF]

Language grade: Python MIT licensed

Wuyang Chen, Xinyu Gong, Zhangyang Wang

In ICLR 2021.

Overview

We present TE-NAS, the first published training-free neural architecture search method with extremely fast search speed (no gradient descent at all!) and high-quality performance.

Highlights:

  • Trainig-free and label-free NAS: we achieved extreme fast neural architecture search without a single gradient descent.
  • Bridging the theory-application gap: We identified two training-free indicators to rank the quality of deep networks: the condition number of their NTKs, and the number of linear regions in their input space.
  • SOTA: TE-NAS achieved extremely fast search speed (one 1080Ti, 20 minutes on NAS-Bench-201 space / four hours on DARTS space on ImageNet) and maintains competitive accuracy.

Prerequisites

  • Ubuntu 16.04
  • Python 3.6.9
  • CUDA 10.1 (lower versions may work but were not tested)
  • NVIDIA GPU + CuDNN v7.3

This repository has been tested on GTX 1080Ti. Configurations may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/chenwydj/TENAS.git
cd TENAS
  • Install dependencies:
pip install -r requirements.txt

Usage

0. Prepare the dataset

  • Please follow the guideline here to prepare the CIFAR-10/100 and ImageNet dataset, and also the NAS-Bench-201 database.
  • Remember to properly set the TORCH_HOME and data_paths in the prune_launch.py.

1. Search

NAS-Bench-201 Space

python prune_launch.py --space nas-bench-201 --dataset cifar10 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset cifar100 --gpu 0
python prune_launch.py --space nas-bench-201 --dataset ImageNet16-120 --gpu 0

DARTS Space (NASNET)

python prune_launch.py --space darts --dataset cifar10 --gpu 0
python prune_launch.py --space darts --dataset imagenet-1k --gpu 0

2. Evaluation

  • For architectures searched on nas-bench-201, the accuracies are immediately available at the end of search (from the console output).
  • For architectures searched on darts, please use DARTS_evaluation for training the searched architecture from scratch and evaluation.

Citation

@inproceedings{chen2020tenas,
  title={Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective},
  author={Chen, Wuyang and Gong, Xinyu and Wang, Zhangyang},
  booktitle={International Conference on Learning Representations},
  year={2021}
}

Acknowledgement

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023