Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Related tags

Deep Learningpynomial
Overview

Pynomial

Pynomial (pronounced like "binomial") is a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model. Pynomial is more or less a python port of the R library {binom} by Sundar Dorai-Raj. As a point of philosophy and until otherwise stated, if {binom} does a thing then so should pynomial (e.g. error throwing or handling cases when the number of successes is the same as the number of trials).

Tests

Features

The following confidence intervals are implemented:

  • The Agresti Coull Interval

  • The asymptotic interval based on the central limit theorem (this is the interval you probably see in most statistics textbooks)

  • An equal tailed posterior credible interval using a conjugate Beta prior

  • The complimentary log-log interval

  • The Wilson score interval

  • The exact interval based on the incomplete beta function.

  • The logit based confidence interval with large sample theory variance.

Installation

You can install pynomial from github using

 pip install git+https://github.com/Dpananos/pynomial

Getting Started

Usage

Using pynomial is very straight forward. Each interval function has three common arguments: x -- the number of success, n -- the number of trials, and conf -- the desired confidence level. Both x and n can be either integers or arrays of integers and conf must be a float between 0 and 1 (the default is 0.95 for a 95% confidence interval). After calling an interval function with the propper arguments, a dataframe will be returned yeilding an estimate of the risk as well as the lower and upper confidence limits. As an example, suppose I flipped a coin 20 times and observed 12 heads. Using the wilson function to compute a Wilson score confidence interval, the output would be

from pynomial import wilson
x = 12
n = 20
wilson(x=x, n=n)
        estimate     lower     upper
Wilson       0.6  0.386582  0.781193

Each interval function is vectorized, so we can compute confidence intervals for many experiments at once.

from pynomial import wilson
x = np.array([11, 12, 13])
n = 20
wilson(x=x, n=n)
        estimate     lower     upper
Wilson      0.55  0.342085  0.741802
Wilson      0.60  0.386582  0.781193
Wilson      0.65  0.432854  0.818808

The output of each interval function is a pandas dataframe, making plotting the confidence intervals straightforward.

Information on Binomial Random Variables

Many textbooks have their own treatment of binomial random variables and confidence intervals. Recommended resources to familliarize one's self with the methods in this library are:

  • Lachin, John M. Biostatistical methods: the assessment of relative risks. Vol. 509. John Wiley & Sons, 2009.

  • Brown, Lawrence D., T. Tony Cai, and Anirban DasGupta. Interval estimation for a binomial proportion. Statistical science 16.2 (2001): 101-133.

  • Brown, Lawrence D., T. Tony Cai, and Anirban DasGupta. Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics 30.1 (2002): 160-201.

Owner
Demetri Pananos
Statistician/Mathematician/Scientist/Former PyMC3 GSoC Student
Demetri Pananos
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022