RodoSol-ALPR Dataset

Overview

RodoSol-ALPR Dataset

This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Rodovia do Sol (RodoSol) concessionaire, which operates 67.5 kilometers of a highway (ES-060) in the Brazilian state of Espírito Santo. It has been introduced in our VISAPP paper (To appear).

There are images of different types of vehicles (e.g., cars, motorcycles, buses and trucks), captured during the day and night, from distinct lanes, on clear and rainy days, and the distance from the vehicle to the camera varies slightly. All images have a resolution of 1,280 × 720 pixels.

An important feature of the proposed dataset is that it has images of two different LP layouts: Brazilian and Mercosur (to maintain consistency with previous works, we refer to “Brazilian” as the standard used in Brazil before the adoption of the Mercosur standard). All Brazilian LPs consist of three letters followed by four digits, while the initial pattern adopted in Brazil for Mercosur LPs consists of 3 letters, 1 digit, 1 letter and 2 digits, in that order. In both layouts, car LPs have the seven characters arranged in one row, whereas motorcycle LPs have three characters in one row and four characters in another. Even though these LP layouts are very similar in shape and size, there are considerable differences in their colors and also in the font of the characters.

Here are some examples from the dataset:

Note: we show a zoomed-in version of the vehicle’s LP in the bottom right corner of the images in the last column for better viewing of the LP layouts.

The 20,000 images are divided as follows: 5,000 images of cars with Brazilian LPs; 5,000 images of motorcycles with Brazilian LPs; 5,000 images of cars with Mercosur LPs; and 5,000 images of motorcycles with Mercosur LPs. For the sake of simplicity of definitions, here “car” refers to any vehicle with four wheels or more (e.g., passenger cars, vans, buses, trucks, among others), while “motorcycle” refers to both motorcycles and motorized tricycles.

We randomly split the RodoSol-ALPR dataset as follows: 8,000 images for training, 8,000 images for testing and 4,000 images for validation, following the split protocol (i.e., 40%/40%/20%) adopted in the SSIG-SegPlate and UFPR-ALPR datasets. We preserved the percentage of samples for each vehicle type and LP layout, for example, there are 2,000 images of cars with Brazilian LPs in each of the training and test sets, and 1,000 images in the validation one. For reproducibility purposes, the subsets generated are explicitly available along with the proposed dataset.

Every image has the following information available in a text file: the vehicle’s type (car or motorcycle), the LP’s layout (Brazilian or Mercosul), its text (e.g., ABC-1234), and the position (x, y) of each of its four corners. We labeled the corners instead of just the LP bounding box to enable the training of methods that explore LP rectification, as well as the application of a wider range of data augmentation techniques.

Regarding privacy concerns related to our dataset, we remark that in Brazil the LPs are related to the respective vehicles, i.e., no public information is available about the vehicle drivers/owners. Moreover, all human faces (e.g., drivers or RodoSol’s employees) were manually redacted (i.e., blurred) in each image.

How to obtain the Dataset

The RodoSol-ALPR dataset is released for academic research only and is free to researchers from educational or research institutes for non-commercial purposes.

To be able to download the dataset, please read carefully this license agreement, fill it out and send it back to the first author ([email protected]). Your e-mail must be sent from a valid university account (.edu, .ac or similar).

In general, a download link will take 1-3 business days to issue. Failure to follow the instructions may result in no response.

Citation

If you use the RodoSol-ALPR dataset in your research, please cite our paper:

  • R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, “On the Cross-dataset Generalization in License Plate Recognition” in International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2022, pp. 1–13. [arXiv]
@inproceedings{laroca2022cross,
  title = {On the Cross-dataset Generalization in License Plate Recognition},
  author = {R. {Laroca} and E. V. {Cardoso} and D. R. {Lucio} and V. {Estevam} and D. {Menotti}},
  year = {2022},
  month = {Feb},
  booktitle = {International Conference on Computer Vision Theory and Applications (VISAPP)},
  volume = {},
  number = {},
  pages = {1-13},
  doi = {},
  issn={2184-4321},
}

Contact

Please contact Rayson Laroca ([email protected]) with questions or comments.

Owner
Rayson Laroca
Rayson Laroca is a PhD student at the Federal University of Paraná (UFPR), where he also received his master's degree in Computer Science.
Rayson Laroca
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022