RodoSol-ALPR Dataset

Overview

RodoSol-ALPR Dataset

This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Rodovia do Sol (RodoSol) concessionaire, which operates 67.5 kilometers of a highway (ES-060) in the Brazilian state of Espírito Santo. It has been introduced in our VISAPP paper (To appear).

There are images of different types of vehicles (e.g., cars, motorcycles, buses and trucks), captured during the day and night, from distinct lanes, on clear and rainy days, and the distance from the vehicle to the camera varies slightly. All images have a resolution of 1,280 × 720 pixels.

An important feature of the proposed dataset is that it has images of two different LP layouts: Brazilian and Mercosur (to maintain consistency with previous works, we refer to “Brazilian” as the standard used in Brazil before the adoption of the Mercosur standard). All Brazilian LPs consist of three letters followed by four digits, while the initial pattern adopted in Brazil for Mercosur LPs consists of 3 letters, 1 digit, 1 letter and 2 digits, in that order. In both layouts, car LPs have the seven characters arranged in one row, whereas motorcycle LPs have three characters in one row and four characters in another. Even though these LP layouts are very similar in shape and size, there are considerable differences in their colors and also in the font of the characters.

Here are some examples from the dataset:

Note: we show a zoomed-in version of the vehicle’s LP in the bottom right corner of the images in the last column for better viewing of the LP layouts.

The 20,000 images are divided as follows: 5,000 images of cars with Brazilian LPs; 5,000 images of motorcycles with Brazilian LPs; 5,000 images of cars with Mercosur LPs; and 5,000 images of motorcycles with Mercosur LPs. For the sake of simplicity of definitions, here “car” refers to any vehicle with four wheels or more (e.g., passenger cars, vans, buses, trucks, among others), while “motorcycle” refers to both motorcycles and motorized tricycles.

We randomly split the RodoSol-ALPR dataset as follows: 8,000 images for training, 8,000 images for testing and 4,000 images for validation, following the split protocol (i.e., 40%/40%/20%) adopted in the SSIG-SegPlate and UFPR-ALPR datasets. We preserved the percentage of samples for each vehicle type and LP layout, for example, there are 2,000 images of cars with Brazilian LPs in each of the training and test sets, and 1,000 images in the validation one. For reproducibility purposes, the subsets generated are explicitly available along with the proposed dataset.

Every image has the following information available in a text file: the vehicle’s type (car or motorcycle), the LP’s layout (Brazilian or Mercosul), its text (e.g., ABC-1234), and the position (x, y) of each of its four corners. We labeled the corners instead of just the LP bounding box to enable the training of methods that explore LP rectification, as well as the application of a wider range of data augmentation techniques.

Regarding privacy concerns related to our dataset, we remark that in Brazil the LPs are related to the respective vehicles, i.e., no public information is available about the vehicle drivers/owners. Moreover, all human faces (e.g., drivers or RodoSol’s employees) were manually redacted (i.e., blurred) in each image.

How to obtain the Dataset

The RodoSol-ALPR dataset is released for academic research only and is free to researchers from educational or research institutes for non-commercial purposes.

To be able to download the dataset, please read carefully this license agreement, fill it out and send it back to the first author ([email protected]). Your e-mail must be sent from a valid university account (.edu, .ac or similar).

In general, a download link will take 1-3 business days to issue. Failure to follow the instructions may result in no response.

Citation

If you use the RodoSol-ALPR dataset in your research, please cite our paper:

  • R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, “On the Cross-dataset Generalization in License Plate Recognition” in International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2022, pp. 1–13. [arXiv]
@inproceedings{laroca2022cross,
  title = {On the Cross-dataset Generalization in License Plate Recognition},
  author = {R. {Laroca} and E. V. {Cardoso} and D. R. {Lucio} and V. {Estevam} and D. {Menotti}},
  year = {2022},
  month = {Feb},
  booktitle = {International Conference on Computer Vision Theory and Applications (VISAPP)},
  volume = {},
  number = {},
  pages = {1-13},
  doi = {},
  issn={2184-4321},
}

Contact

Please contact Rayson Laroca ([email protected]) with questions or comments.

Owner
Rayson Laroca
Rayson Laroca is a PhD student at the Federal University of Paraná (UFPR), where he also received his master's degree in Computer Science.
Rayson Laroca
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022