This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Overview

KGI (Knowledge Graph Induction) for slot filling

This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Our model is described in: Zero-shot Slot Filling with DPR and RAG

Available from Hugging Face as:

Dataset Type Model Name Tokenizer Name
T-REx DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-trex facebook/dpr-ctx_encoder-multiset-base
T-REx RAG michaelrglass/rag-token-nq-kgi0-trex rag-token-nq
zsRE DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-zsre facebook/dpr-ctx_encoder-multiset-base
zsRE RAG michaelrglass/rag-token-nq-kgi0-zsre rag-token-nq

Process to reproduce

Download the KILT data and knowledge source

Segment the KILT Knowledge Source into passages:

python slot_filling/kilt_passage_corpus.py \
--kilt_corpus kilt_knowledgesource.json --output_dir kilt_passages --passage_ids passage_ids.txt

Generate the first phase of the DPR training data

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data structured_zeroshot-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file zsRE_train_positive_pids.jsonl

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data trex-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file trex_train_positive_pids.jsonl

Download and build Anserini. You will need to have Maven and a Java JDK.

git clone https://github.com/castorini/anserini.git
cd anserini
# to use the 0.4.1 version dprBM25.jar is built for
git checkout 3a60106fdc83473d147218d78ae7dca7c3b6d47c
export JAVA_HOME=your JDK directory
mvn clean package appassembler:assemble

put the title/text into the training instance with hard negatives from BM25

python dpr/anserini_prep.py \
--input kilt_passages \
--output anserini_passages

sh Anserini/target/appassembler/bin/IndexCollection -collection JsonCollection \
-generator LuceneDocumentGenerator -threads 40 -input anserini_passages \
-index anserini_passage_index -storePositions -storeDocvectors -storeRawDocs

export CLASSPATH=jar/dprBM25.jar:Anserini/target/anserini-0.4.1-SNAPSHOT-fatjar.jar
java com.ibm.research.ai.pretraining.retrieval.DPRTrainingData \
-passageIndex anserini_passage_index \
-positivePidData ${dataset}_train_positive_pids.jsonl \
-trainingData ${dataset}_dpr_training_data.jsonl

Train DPR

# multi-gpu is not well supported
export CUDA_VISIBLE_DEVICES=0

python dpr/biencoder_trainer.py \
--train_dir zsRE_dpr_training_data.jsonl \
--output_dir models/DPR/zsRE \
--num_train_epochs 2 \
--num_instances 131610 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

python dpr/biencoder_trainer.py \
--train_dir trex_dpr_training_data.jsonl \
--output_dir models/DPR/trex \
--num_train_epochs 2 \
--num_instances 2207953 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

Put the trained DPR query encoder into the NQ RAG model (dataset = trex, zsRE)

python dpr/prepare_rag_model.py \
--save_dir models/RAG/${dataset}_dpr_rag_init  \
--qry_encoder_path models/DPR/${dataset}/qry_encoder

Encode the passages (dataset = trex, zsRE)

python dpr/index_simple_corpus.py \
--embed 1of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages  \
--output_dir kilt_passages_${dataset}

python rag/dpr/index_simple_corpus.py \
--embed 2of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages \
--output_dir kilt_passages_${dataset}

Index the passage vectors (dataset = trex, zsRE)

python dpr/faiss_index.py \
--corpus_dir kilt_passages_${dataset} \
--scalar_quantizer 8 \
--output_file kilt_passages_${dataset}/index.faiss

Train RAG

python dataloader/file_splitter.py \
--input trex-train-kilt.jsonl \
--outdirs trex_training \
--file_counts 64

python slot_filling/rag_client_server_train.py \
  --kilt_data trex_training \
  --output models/RAG/trex_dpr_rag \
  --corpus_endpoint kilt_passages_trex \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/trex_dpr_rag_init \
  --num_instances 500000 --warmup_instances 10000  --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64


python slot_filling/rag_client_server_train.py \
  --kilt_data structured_zeroshot-train-kilt.jsonl \
  --output models/RAG/zsRE_dpr_rag \
  --corpus_endpoint kilt_passages_zsRE \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/zsRE_dpr_rag_init \
  --num_instances 147909  --warmup_instances 10000 --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64

Apply RAG (dev_file = trex-dev-kilt.jsonl, structured_zeroshot-dev-kilt.jsonl)

python slot_filling/rag_client_server_apply.py \
  --kilt_data ${dev_file} \
  --corpus_endpoint kilt_passages_${dataset} \
  --output predictions/${dataset}_dev.jsonl \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/${dataset}_dpr_rag

python eval/convert_for_kilt_eval.py \
--apply_file predictions/${dataset}_dev.jsonl \
--eval_file predictions/${dataset}_dev_kilt_format.jsonl

Run official evaluation script

# install KILT evaluation scripts
git clone https://github.com/facebookresearch/KILT.git
cd KILT
conda create -n kilt37 -y python=3.7 && conda activate kilt37
pip install -r requirements.txt
export PYTHONPATH=`pwd`

# run evaluation
python kilt/eval_downstream.py predictions/${dataset}_dev_kilt_format.jsonl ${dev_file}
Owner
International Business Machines
International Business Machines
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022