This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Overview

KGI (Knowledge Graph Induction) for slot filling

This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Our model is described in: Zero-shot Slot Filling with DPR and RAG

Available from Hugging Face as:

Dataset Type Model Name Tokenizer Name
T-REx DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-trex facebook/dpr-ctx_encoder-multiset-base
T-REx RAG michaelrglass/rag-token-nq-kgi0-trex rag-token-nq
zsRE DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-zsre facebook/dpr-ctx_encoder-multiset-base
zsRE RAG michaelrglass/rag-token-nq-kgi0-zsre rag-token-nq

Process to reproduce

Download the KILT data and knowledge source

Segment the KILT Knowledge Source into passages:

python slot_filling/kilt_passage_corpus.py \
--kilt_corpus kilt_knowledgesource.json --output_dir kilt_passages --passage_ids passage_ids.txt

Generate the first phase of the DPR training data

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data structured_zeroshot-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file zsRE_train_positive_pids.jsonl

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data trex-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file trex_train_positive_pids.jsonl

Download and build Anserini. You will need to have Maven and a Java JDK.

git clone https://github.com/castorini/anserini.git
cd anserini
# to use the 0.4.1 version dprBM25.jar is built for
git checkout 3a60106fdc83473d147218d78ae7dca7c3b6d47c
export JAVA_HOME=your JDK directory
mvn clean package appassembler:assemble

put the title/text into the training instance with hard negatives from BM25

python dpr/anserini_prep.py \
--input kilt_passages \
--output anserini_passages

sh Anserini/target/appassembler/bin/IndexCollection -collection JsonCollection \
-generator LuceneDocumentGenerator -threads 40 -input anserini_passages \
-index anserini_passage_index -storePositions -storeDocvectors -storeRawDocs

export CLASSPATH=jar/dprBM25.jar:Anserini/target/anserini-0.4.1-SNAPSHOT-fatjar.jar
java com.ibm.research.ai.pretraining.retrieval.DPRTrainingData \
-passageIndex anserini_passage_index \
-positivePidData ${dataset}_train_positive_pids.jsonl \
-trainingData ${dataset}_dpr_training_data.jsonl

Train DPR

# multi-gpu is not well supported
export CUDA_VISIBLE_DEVICES=0

python dpr/biencoder_trainer.py \
--train_dir zsRE_dpr_training_data.jsonl \
--output_dir models/DPR/zsRE \
--num_train_epochs 2 \
--num_instances 131610 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

python dpr/biencoder_trainer.py \
--train_dir trex_dpr_training_data.jsonl \
--output_dir models/DPR/trex \
--num_train_epochs 2 \
--num_instances 2207953 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

Put the trained DPR query encoder into the NQ RAG model (dataset = trex, zsRE)

python dpr/prepare_rag_model.py \
--save_dir models/RAG/${dataset}_dpr_rag_init  \
--qry_encoder_path models/DPR/${dataset}/qry_encoder

Encode the passages (dataset = trex, zsRE)

python dpr/index_simple_corpus.py \
--embed 1of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages  \
--output_dir kilt_passages_${dataset}

python rag/dpr/index_simple_corpus.py \
--embed 2of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages \
--output_dir kilt_passages_${dataset}

Index the passage vectors (dataset = trex, zsRE)

python dpr/faiss_index.py \
--corpus_dir kilt_passages_${dataset} \
--scalar_quantizer 8 \
--output_file kilt_passages_${dataset}/index.faiss

Train RAG

python dataloader/file_splitter.py \
--input trex-train-kilt.jsonl \
--outdirs trex_training \
--file_counts 64

python slot_filling/rag_client_server_train.py \
  --kilt_data trex_training \
  --output models/RAG/trex_dpr_rag \
  --corpus_endpoint kilt_passages_trex \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/trex_dpr_rag_init \
  --num_instances 500000 --warmup_instances 10000  --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64


python slot_filling/rag_client_server_train.py \
  --kilt_data structured_zeroshot-train-kilt.jsonl \
  --output models/RAG/zsRE_dpr_rag \
  --corpus_endpoint kilt_passages_zsRE \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/zsRE_dpr_rag_init \
  --num_instances 147909  --warmup_instances 10000 --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64

Apply RAG (dev_file = trex-dev-kilt.jsonl, structured_zeroshot-dev-kilt.jsonl)

python slot_filling/rag_client_server_apply.py \
  --kilt_data ${dev_file} \
  --corpus_endpoint kilt_passages_${dataset} \
  --output predictions/${dataset}_dev.jsonl \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/${dataset}_dpr_rag

python eval/convert_for_kilt_eval.py \
--apply_file predictions/${dataset}_dev.jsonl \
--eval_file predictions/${dataset}_dev_kilt_format.jsonl

Run official evaluation script

# install KILT evaluation scripts
git clone https://github.com/facebookresearch/KILT.git
cd KILT
conda create -n kilt37 -y python=3.7 && conda activate kilt37
pip install -r requirements.txt
export PYTHONPATH=`pwd`

# run evaluation
python kilt/eval_downstream.py predictions/${dataset}_dev_kilt_format.jsonl ${dev_file}
Owner
International Business Machines
International Business Machines
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022