This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Overview

KGI (Knowledge Graph Induction) for slot filling

This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Our model is described in: Zero-shot Slot Filling with DPR and RAG

Available from Hugging Face as:

Dataset Type Model Name Tokenizer Name
T-REx DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-trex facebook/dpr-ctx_encoder-multiset-base
T-REx RAG michaelrglass/rag-token-nq-kgi0-trex rag-token-nq
zsRE DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-zsre facebook/dpr-ctx_encoder-multiset-base
zsRE RAG michaelrglass/rag-token-nq-kgi0-zsre rag-token-nq

Process to reproduce

Download the KILT data and knowledge source

Segment the KILT Knowledge Source into passages:

python slot_filling/kilt_passage_corpus.py \
--kilt_corpus kilt_knowledgesource.json --output_dir kilt_passages --passage_ids passage_ids.txt

Generate the first phase of the DPR training data

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data structured_zeroshot-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file zsRE_train_positive_pids.jsonl

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data trex-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file trex_train_positive_pids.jsonl

Download and build Anserini. You will need to have Maven and a Java JDK.

git clone https://github.com/castorini/anserini.git
cd anserini
# to use the 0.4.1 version dprBM25.jar is built for
git checkout 3a60106fdc83473d147218d78ae7dca7c3b6d47c
export JAVA_HOME=your JDK directory
mvn clean package appassembler:assemble

put the title/text into the training instance with hard negatives from BM25

python dpr/anserini_prep.py \
--input kilt_passages \
--output anserini_passages

sh Anserini/target/appassembler/bin/IndexCollection -collection JsonCollection \
-generator LuceneDocumentGenerator -threads 40 -input anserini_passages \
-index anserini_passage_index -storePositions -storeDocvectors -storeRawDocs

export CLASSPATH=jar/dprBM25.jar:Anserini/target/anserini-0.4.1-SNAPSHOT-fatjar.jar
java com.ibm.research.ai.pretraining.retrieval.DPRTrainingData \
-passageIndex anserini_passage_index \
-positivePidData ${dataset}_train_positive_pids.jsonl \
-trainingData ${dataset}_dpr_training_data.jsonl

Train DPR

# multi-gpu is not well supported
export CUDA_VISIBLE_DEVICES=0

python dpr/biencoder_trainer.py \
--train_dir zsRE_dpr_training_data.jsonl \
--output_dir models/DPR/zsRE \
--num_train_epochs 2 \
--num_instances 131610 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

python dpr/biencoder_trainer.py \
--train_dir trex_dpr_training_data.jsonl \
--output_dir models/DPR/trex \
--num_train_epochs 2 \
--num_instances 2207953 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

Put the trained DPR query encoder into the NQ RAG model (dataset = trex, zsRE)

python dpr/prepare_rag_model.py \
--save_dir models/RAG/${dataset}_dpr_rag_init  \
--qry_encoder_path models/DPR/${dataset}/qry_encoder

Encode the passages (dataset = trex, zsRE)

python dpr/index_simple_corpus.py \
--embed 1of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages  \
--output_dir kilt_passages_${dataset}

python rag/dpr/index_simple_corpus.py \
--embed 2of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages \
--output_dir kilt_passages_${dataset}

Index the passage vectors (dataset = trex, zsRE)

python dpr/faiss_index.py \
--corpus_dir kilt_passages_${dataset} \
--scalar_quantizer 8 \
--output_file kilt_passages_${dataset}/index.faiss

Train RAG

python dataloader/file_splitter.py \
--input trex-train-kilt.jsonl \
--outdirs trex_training \
--file_counts 64

python slot_filling/rag_client_server_train.py \
  --kilt_data trex_training \
  --output models/RAG/trex_dpr_rag \
  --corpus_endpoint kilt_passages_trex \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/trex_dpr_rag_init \
  --num_instances 500000 --warmup_instances 10000  --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64


python slot_filling/rag_client_server_train.py \
  --kilt_data structured_zeroshot-train-kilt.jsonl \
  --output models/RAG/zsRE_dpr_rag \
  --corpus_endpoint kilt_passages_zsRE \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/zsRE_dpr_rag_init \
  --num_instances 147909  --warmup_instances 10000 --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64

Apply RAG (dev_file = trex-dev-kilt.jsonl, structured_zeroshot-dev-kilt.jsonl)

python slot_filling/rag_client_server_apply.py \
  --kilt_data ${dev_file} \
  --corpus_endpoint kilt_passages_${dataset} \
  --output predictions/${dataset}_dev.jsonl \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/${dataset}_dpr_rag

python eval/convert_for_kilt_eval.py \
--apply_file predictions/${dataset}_dev.jsonl \
--eval_file predictions/${dataset}_dev_kilt_format.jsonl

Run official evaluation script

# install KILT evaluation scripts
git clone https://github.com/facebookresearch/KILT.git
cd KILT
conda create -n kilt37 -y python=3.7 && conda activate kilt37
pip install -r requirements.txt
export PYTHONPATH=`pwd`

# run evaluation
python kilt/eval_downstream.py predictions/${dataset}_dev_kilt_format.jsonl ${dev_file}
Owner
International Business Machines
International Business Machines
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022