This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Overview

KGI (Knowledge Graph Induction) for slot filling

This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

Our model is described in: Zero-shot Slot Filling with DPR and RAG

Available from Hugging Face as:

Dataset Type Model Name Tokenizer Name
T-REx DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-trex facebook/dpr-ctx_encoder-multiset-base
T-REx RAG michaelrglass/rag-token-nq-kgi0-trex rag-token-nq
zsRE DPR (ctx) michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-zsre facebook/dpr-ctx_encoder-multiset-base
zsRE RAG michaelrglass/rag-token-nq-kgi0-zsre rag-token-nq

Process to reproduce

Download the KILT data and knowledge source

Segment the KILT Knowledge Source into passages:

python slot_filling/kilt_passage_corpus.py \
--kilt_corpus kilt_knowledgesource.json --output_dir kilt_passages --passage_ids passage_ids.txt

Generate the first phase of the DPR training data

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data structured_zeroshot-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file zsRE_train_positive_pids.jsonl

python dpr/dpr_kilt_slot_filling_dataset.py \
--kilt_data trex-train-kilt.jsonl \
--passage_ids passage_ids.txt \
--output_file trex_train_positive_pids.jsonl

Download and build Anserini. You will need to have Maven and a Java JDK.

git clone https://github.com/castorini/anserini.git
cd anserini
# to use the 0.4.1 version dprBM25.jar is built for
git checkout 3a60106fdc83473d147218d78ae7dca7c3b6d47c
export JAVA_HOME=your JDK directory
mvn clean package appassembler:assemble

put the title/text into the training instance with hard negatives from BM25

python dpr/anserini_prep.py \
--input kilt_passages \
--output anserini_passages

sh Anserini/target/appassembler/bin/IndexCollection -collection JsonCollection \
-generator LuceneDocumentGenerator -threads 40 -input anserini_passages \
-index anserini_passage_index -storePositions -storeDocvectors -storeRawDocs

export CLASSPATH=jar/dprBM25.jar:Anserini/target/anserini-0.4.1-SNAPSHOT-fatjar.jar
java com.ibm.research.ai.pretraining.retrieval.DPRTrainingData \
-passageIndex anserini_passage_index \
-positivePidData ${dataset}_train_positive_pids.jsonl \
-trainingData ${dataset}_dpr_training_data.jsonl

Train DPR

# multi-gpu is not well supported
export CUDA_VISIBLE_DEVICES=0

python dpr/biencoder_trainer.py \
--train_dir zsRE_dpr_training_data.jsonl \
--output_dir models/DPR/zsRE \
--num_train_epochs 2 \
--num_instances 131610 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

python dpr/biencoder_trainer.py \
--train_dir trex_dpr_training_data.jsonl \
--output_dir models/DPR/trex \
--num_train_epochs 2 \
--num_instances 2207953 \
--encoder_gpu_train_limit 32 \
--full_train_batch_size 128 \
--max_grad_norm 1.0 --learning_rate 5e-5

Put the trained DPR query encoder into the NQ RAG model (dataset = trex, zsRE)

python dpr/prepare_rag_model.py \
--save_dir models/RAG/${dataset}_dpr_rag_init  \
--qry_encoder_path models/DPR/${dataset}/qry_encoder

Encode the passages (dataset = trex, zsRE)

python dpr/index_simple_corpus.py \
--embed 1of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages  \
--output_dir kilt_passages_${dataset}

python rag/dpr/index_simple_corpus.py \
--embed 2of2 \
--dpr_ctx_encoder_path models/DPR/${dataset}/ctx_encoder \
--corpus kilt_passages \
--output_dir kilt_passages_${dataset}

Index the passage vectors (dataset = trex, zsRE)

python dpr/faiss_index.py \
--corpus_dir kilt_passages_${dataset} \
--scalar_quantizer 8 \
--output_file kilt_passages_${dataset}/index.faiss

Train RAG

python dataloader/file_splitter.py \
--input trex-train-kilt.jsonl \
--outdirs trex_training \
--file_counts 64

python slot_filling/rag_client_server_train.py \
  --kilt_data trex_training \
  --output models/RAG/trex_dpr_rag \
  --corpus_endpoint kilt_passages_trex \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/trex_dpr_rag_init \
  --num_instances 500000 --warmup_instances 10000  --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64


python slot_filling/rag_client_server_train.py \
  --kilt_data structured_zeroshot-train-kilt.jsonl \
  --output models/RAG/zsRE_dpr_rag \
  --corpus_endpoint kilt_passages_zsRE \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/zsRE_dpr_rag_init \
  --num_instances 147909  --warmup_instances 10000 --num_train_epochs 1 \
  --learning_rate 3e-5 --full_train_batch_size 128 --gradient_accumulation_steps 64

Apply RAG (dev_file = trex-dev-kilt.jsonl, structured_zeroshot-dev-kilt.jsonl)

python slot_filling/rag_client_server_apply.py \
  --kilt_data ${dev_file} \
  --corpus_endpoint kilt_passages_${dataset} \
  --output predictions/${dataset}_dev.jsonl \
  --model_name facebook/rag-token-nq \
  --model_path models/RAG/${dataset}_dpr_rag

python eval/convert_for_kilt_eval.py \
--apply_file predictions/${dataset}_dev.jsonl \
--eval_file predictions/${dataset}_dev_kilt_format.jsonl

Run official evaluation script

# install KILT evaluation scripts
git clone https://github.com/facebookresearch/KILT.git
cd KILT
conda create -n kilt37 -y python=3.7 && conda activate kilt37
pip install -r requirements.txt
export PYTHONPATH=`pwd`

# run evaluation
python kilt/eval_downstream.py predictions/${dataset}_dev_kilt_format.jsonl ${dev_file}
Owner
International Business Machines
International Business Machines
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022