Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

Overview

BBB Face Recognizer

Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

Cam frame visualization

Instalation

Install dependencies using requirements.txt

pip install -r requirements.txt

Usage

To use the project successfully, you need to follow the steps below.

1. Dataset

It is needed to build a dataset through the dataset_generator.py script.

This script builds a dataset with train and validation directories according by user labeling, using real time cam frames from reality show.

On execute will be created a directory on src folder with the following structure:

dataset
└── train
    └── label1
    └── label2
    └── label3
    └── ...
└── val
    └── label1
    └── label2
    └── label3
    └── ...

And you will be able to populate the train dataset.

If you want populate validation dataset use "-val" as first command line argument.

As the screenshot below, insert the label number that matches with shown face and repeat this process until you have enough data.

Dataset Labeling

For each label input, the .jpg image will be auto stored on respective dataset.

If you don't recognize the shown face, just leave blank input to skip.

2. Model

Now is needed to generate a model through the model_generator.py script.

Upon successful execution, the accuracy and confusion matrix of train and validation will be presented, and a directory will be created in the src folder with the following structure:

model_files
└── label_encoder.joblib
└── metrics.txt
└── model.joblib

This joblib files will be loaded by face_predictor.py to use generated model.

3. API

Lastly the API can be started.

For development purpose run the live server with commands below.

cd src
uvicorn api:app --reload

Upon successful run, access in your browser http://127.0.0.1:8000/cams to get a json response with list of cams with recognized faces, like presented below.

[
  {
    "name": "BBB 22 - Câmera 1",
    "location": "Acompanhe a Casa",
    "snapshot_link": "https://live-thumbs.video.globo.com/bbb01/snapshot/",
    "slug": "bbb-22-camera-1",
    "media_id": "244881",
    "stream_link": "https://globoplay.globo.com/bbb-22-camera-1/ao-vivo/244881/?category=bbb",
    "recognized_faces": [
      {
        "label": "arthur",
        "probability": 64.19885945991763,
        "coordinates": {
          "topLeft": [
            118,
            45
          ],
          "bottomRight": [
            240,
            199
          ]
        }
      },
      {
        "label": "eliezer",
        "probability": 39.81395352766756,
        "coordinates": {
          "topLeft": [
            380,
            53
          ],
          "bottomRight": [
            460,
            152
          ]
        }
      },
      {
        "label": "scooby",
        "probability": 37.971779438946054,
        "coordinates": {
          "topLeft": [
            195,
            83
          ],
          "bottomRight": [
            404,
            358
          ]
        }
      }
    ],
    "scrape_timestamp": "2022-03-01T22:24:41.989674",
    "frame_timestamp": "2022-03-01T22:24:42.307244"
  },
  ...
]

To see all provided routes access the documentation auto generated by FAST API with Swagger UI.

For more details access FAST API documentation.

If you want to visualize the frame and face recognition on real time, set VISUALIZATION_ENABLED to True in the api.py file (use only for development), for each cam frame will be apresented like the first screenshot.

TO DO

  • cam_scraper.py: upgrade scrape_cam_frame() to get a high definition cam frame.
  • api.py: return cam list by label based on probability
  • api.py: use a database to store historical data
  • face_predictor.py: predict emotions
Owner
Rafael Azevedo
Computer Engineering student at State University of Feira de Santana. Software developer at Globo.
Rafael Azevedo
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022