An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

Overview

OptiCL

OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in which a practitioner wishes to optimize decisions according to some objective and constraints, but that we have no known functions relating our decisions to the outcomes of interest. We propose to learn predictive models for these outcomes using machine learning, and to subsequently optimize decisions by embedding the learned models in a larger MIO formulation.

The framework and full methodology are detailed in our manuscript, Mixed-Integer Optimization with Constraint Learning.

How to use OptiCL

You can install the OptiCL package locally by cloning the repository and running pip install . within the home directory of the repo. This will allow you to load opticl in Python; see the example notebooks for specific usage of the functions.

The OptiCL pipeline

Our pipeline requires two inputs from a user:

  • Training data, with features classified as contextual variables, decisions, and outcomes.
  • An initial conceptual model, which is defined by specifying the decision variables and any domain-driven fixed constraints or deterministic objective terms.

Given these inputs, we implement a pipeline that:

  1. Learns predictive models for the outcomes of interest by using a moel training and selection pipeline with cross-validation.
  2. Efficiently charactertizes the feasible decision space, or "trust region," using the convex hull of the observed data.
  3. Embeds the learned models and trust region into a MIO formulation, which can then be solved using a Pyomo-supported MIO solver (e.g., Gurobi).

OptiCL requires no manual specification of a trained ML model, although the end-user can optionally restrict to a subset of model types to be considered in the selection pipeline. Furthermore, we expose the underlying trained models within the pipeline, providing transparency and allowing for the predictive models to be externally evaluated.

Examples

We illustrate the full OptiCL pipeline in three notebooks:

  • A case study on food basket optimization for the World Food Programme (notebooks/WFP/The Palatable Diet Problem.ipynb): This notebook presents a simplified version of the case study in the manuscript. It shows how to train and select models for a single learned outcome, define a conceptual model with a known objective and constraints, and solve the MIO with an additional learned constraint.
  • A general pipeline overview (notebooks/Pipeline/Model_embedding.ipynb): This notebook demonstrates the general features of the pipleine, including the procedure for training and embedding models for multiple outcomes, the specification of each outcome as either a constraint or objective term, and the incorporation of contextual features and domain-driven constraints.
  • Model verification (notebooks/Pipeline/Model_Verification_Regression.ipynb, notebooks/Pipeline/Model_Verification_Classification.ipynb): These notebooks shows the training and embedding of a single model and compares the sklearn predictions to the MIO predictions to verify the MIO embeddings. The classification notebook also provides details on how we linearize constraints for the binary classification setting.

The package currently fully supports model training and embedding for continuous outcomes across all ML methods, as demonstrated in the example notebooks. Binary classification is fully supported for learned constraints. Multi-class classification support is in development.

Citation

Our software can be cited as:

  @misc{OptiCL,
    author = "Donato Maragno and Holly Wiberg",
    title = "OptiCL: Mixed-integer optimization with constraint learning",
    year = 2021,
    url = "https://github.com/hwiberg/OptiCL/"
  }

Get in touch!

Our package is under active development. We welcome any questions or suggestions. Please submit an issue on Github, or reach us at [email protected] and [email protected].

Owner
Holly Wiberg
Holly Wiberg
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023