An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

Overview

OptiCL

OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in which a practitioner wishes to optimize decisions according to some objective and constraints, but that we have no known functions relating our decisions to the outcomes of interest. We propose to learn predictive models for these outcomes using machine learning, and to subsequently optimize decisions by embedding the learned models in a larger MIO formulation.

The framework and full methodology are detailed in our manuscript, Mixed-Integer Optimization with Constraint Learning.

How to use OptiCL

You can install the OptiCL package locally by cloning the repository and running pip install . within the home directory of the repo. This will allow you to load opticl in Python; see the example notebooks for specific usage of the functions.

The OptiCL pipeline

Our pipeline requires two inputs from a user:

  • Training data, with features classified as contextual variables, decisions, and outcomes.
  • An initial conceptual model, which is defined by specifying the decision variables and any domain-driven fixed constraints or deterministic objective terms.

Given these inputs, we implement a pipeline that:

  1. Learns predictive models for the outcomes of interest by using a moel training and selection pipeline with cross-validation.
  2. Efficiently charactertizes the feasible decision space, or "trust region," using the convex hull of the observed data.
  3. Embeds the learned models and trust region into a MIO formulation, which can then be solved using a Pyomo-supported MIO solver (e.g., Gurobi).

OptiCL requires no manual specification of a trained ML model, although the end-user can optionally restrict to a subset of model types to be considered in the selection pipeline. Furthermore, we expose the underlying trained models within the pipeline, providing transparency and allowing for the predictive models to be externally evaluated.

Examples

We illustrate the full OptiCL pipeline in three notebooks:

  • A case study on food basket optimization for the World Food Programme (notebooks/WFP/The Palatable Diet Problem.ipynb): This notebook presents a simplified version of the case study in the manuscript. It shows how to train and select models for a single learned outcome, define a conceptual model with a known objective and constraints, and solve the MIO with an additional learned constraint.
  • A general pipeline overview (notebooks/Pipeline/Model_embedding.ipynb): This notebook demonstrates the general features of the pipleine, including the procedure for training and embedding models for multiple outcomes, the specification of each outcome as either a constraint or objective term, and the incorporation of contextual features and domain-driven constraints.
  • Model verification (notebooks/Pipeline/Model_Verification_Regression.ipynb, notebooks/Pipeline/Model_Verification_Classification.ipynb): These notebooks shows the training and embedding of a single model and compares the sklearn predictions to the MIO predictions to verify the MIO embeddings. The classification notebook also provides details on how we linearize constraints for the binary classification setting.

The package currently fully supports model training and embedding for continuous outcomes across all ML methods, as demonstrated in the example notebooks. Binary classification is fully supported for learned constraints. Multi-class classification support is in development.

Citation

Our software can be cited as:

  @misc{OptiCL,
    author = "Donato Maragno and Holly Wiberg",
    title = "OptiCL: Mixed-integer optimization with constraint learning",
    year = 2021,
    url = "https://github.com/hwiberg/OptiCL/"
  }

Get in touch!

Our package is under active development. We welcome any questions or suggestions. Please submit an issue on Github, or reach us at [email protected] and [email protected].

Owner
Holly Wiberg
Holly Wiberg
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022