Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Overview

Video Class Agnostic Segmentation

[Method Paper] [Benchmark Paper] [Project] [Demo]

Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation Benchmark in Autonomous Driving" in Workshop on Autonomous Driving, CVPR 2021.



Installation

This repo is tested under Python 3.6, PyTorch 1.4

  • Download Required Packages
pip install -r requirements.txt
pip install "git+https://github.com/cocodataset/panopticapi.git"
  • Setup mmdet
python setup.py develop

Motion Segmentation Track

Dataset Preparation

Inference

  • Download Trained Weights on Ego Flow Suppressed, trained on Cityscapes and KITTI-MOTS

  • Modify Configs according to dataset path + Image/Annotation/Flow prefix

configs/data/kittimots_motion_supp.py
configs/data/cscapesvps_motion_supp.py
  • Evaluate CAQ,
python tools/test_eval_caq.py CONFIG_FILE WEIGHTS_FILE

CONFIG_FILE: configs/infer_kittimots.py or configs/infer_cscapesvps.py

  • Qualitative Results
python tools/test_vis.py CONFIG_FILE WEIGHTS_FILE --vis_unknown --save_dir OUTS_DIR
  • Evaluate Image Panoptic Quality, Note: evaluated on 1024x2048 Images
python tools/test_eval_ipq.py configs/infer_cscapesvps_pq.py WEIGHTS_FILE --out PKL_FILE

Training

Coming Soon ...

Open-set Segmentation Track

Coming soon ...

Acknowledgements

Dataset and Repository relied on these sources:

  • Voigtlaender, Paul, et al. "Mots: Multi-object tracking and segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
  • Kim, Dahun, et al. "Video panoptic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
  • Wang, Xinlong, et al. "Solo: Segmenting objects by locations." European Conference on Computer Vision. Springer, Cham, 2020.
  • This Repository built upon SOLO Code

Citation

@article{siam2021video,
      title={Video Class Agnostic Segmentation Benchmark for Autonomous Driving}, 
      author={Mennatullah Siam and Alex Kendall and Martin Jagersand},
      year={2021},
      eprint={2103.11015},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

If you have any questions regarding the dataset or repository, please contact [email protected].

Owner
Mennatullah Siam
PhD Student
Mennatullah Siam
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023