Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

Overview

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks

DOI shield_license

Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies. The idea of ensemble learning is to assemble diverse models or multiple predictions and, thus, boost prediction performance. However, it is still an open question to what extend as well as which ensemble learning strategies are beneficial in deep learning based medical image classification pipelines.

In this work, we proposed a reproducible medical image classification pipeline (ensmic) for analyzing the performance impact of the following ensemble learning techniques: Augmenting, Stacking, and Bagging. The pipeline consists of state-of-the-art preprocessing and image augmentation methods as well as 9 deep convolution neural network architectures. It was applied on four popular medical imaging datasets with varying complexity. Furthermore, 12 pooling functions for combining multiple predictions were analyzed, ranging from simple statistical functions like unweighted averaging up to more complex learning-based functions like support vector machines.

theory

We concluded that the integration of Stacking and Augmentation ensemble learning techniques is a powerful method for any medical image classification pipeline to improve robustness and boost performance.

The sampling, results, figures and meta data is available under the following link:
https://doi.org/10.5281/zenodo.5783473


Results

Showcase

Our results revealed that Stacking was able to achieve the largest performance gain of up to 13% F1-score increase. Augmenting showed consistent improvement capabilities by up to 4% and is also appliable to single model based pipelines. Cross-validation based Bagging demonstrated to be the most complex ensemble learning method, which resulted in an F1-score decrease in all analyzed datasets (up to -10%). Furthermore, we demonstrated that simple statistical pooling functions are equal or often even better than more complex pooling functions.

Results

Summary of all experiments to identify performance impact of ensemble learning techniques on medical image classification.
LEFT: Bar plots showing the maximum achieved Accuracy across all methods for each ensemble learning technique and dataset: Baseline (red), Augmenting (blue), Bagging (green) and Stacking (purple). Additionally, the distribution of achieved F1-scores by the various methods is illustrated with box plots.
RIGHT: Computed performance impact between the best scoring method of the Baseline and the best scoring method of the applied ensemble learning technique for each dataset. The performance impact is represented as performance gain in % between F1-scores (RIGHT TOP) as well as Accuracies (RIGHT BOTTOM). The color mapping of the ensemble learning techniques are equal to Figure 7 LEFT (Augmenting: Blue; Bagging: Green; Stacking: Purple).

Reproducibility

Requirements:

  • Ubuntu 18.04
  • Python 3.7
  • NVIDIA QUADRO RTX 6000 or a GPU with equivalent performance

Step-by-Step workflow:

Download ensmic via:

git clone https://github.com/frankkramer-lab/ensmic.git
cd ensmic/

Install ensmic via:

python setup.py install

Run the scripts for the desired phases.
Please check out the following protocol on script execution:
https://github.com/frankkramer-lab/ensmic/blob/master/COMMANDS.md


Datasets

X-Ray COVID19

Classes: 3 - Pneumonia, COVID-19, NORMAL
Size: 2.905 images
Source: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

Short Description:
A team of researchers from Qatar University, Doha, Qatar and the University of Dhaka, Bangladesh along with their collaborators from Pakistan and Malaysia in collaboration with medical doctors have created a database of chest X-ray images for COVID-19 positive cases along with Normal and Viral Pneumonia images. In our current release, there are 219 COVID-19 positive images, 1341 normal images and 1345 viral pneumonia images. We will continue to update this database as soon as we have new x-ray images for COVID-19 pneumonia patients.

Reference:
M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N. Al-Emadi, M.B.I. Reaz, M. T. Islam, “Can AI help in screening Viral and COVID-19 pneumonia?” IEEE Access, Vol. 8, 2020, pp. 132665 - 132676.

The ISIC 2019 Challenge Dataset

Classes: 9 - Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Dermatofibroma, Vascular lesion, Squamous cell carcinoma, Unknown
Size: 25.331 images
Source: https://challenge2019.isic-archive.com/ or https://www.kaggle.com/andrewmvd/isic-2019

Short Description:
Skin cancer is the most common cancer globally, with melanoma being the most deadly form. Dermoscopy is a skin imaging modality that has demonstrated improvement for diagnosis of skin cancer compared to unaided visual inspection. However, clinicians should receive adequate training for those improvements to be realized. In order to make expertise more widely available, the International Skin Imaging Collaboration (ISIC) has developed the ISIC Archive, an international repository of dermoscopic images, for both the purposes of clinical training, and for supporting technical research toward automated algorithmic analysis by hosting the ISIC Challenges.

Note:
We didn't use the newest ISIC 2020 (https://challenge2020.isic-archive.com/), because it was purely a binary classification dataset.
We utilized the multi-class 2019 variant in order to obtain a more difficult task for better evaluation of the ensemble learning performance gain.

Reference:
[1] Tschandl P., Rosendahl C. & Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 doi.10.1038/sdata.2018.161 (2018)
[2] Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W. Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, Allan Halpern: “Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)”, 2017; arXiv:1710.05006.
[3] Marc Combalia, Noel C. F. Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer Reiter, Allan C. Halpern, Susana Puig, Josep Malvehy: “BCN20000: Dermoscopic Lesions in the Wild”, 2019; arXiv:1908.02288.

Diabetic Retinopathy Detection Dataset

Classes: 5 - "No DR", "Mild", "Moderate", "Severe", "Proliferative DR"
Size: 35.126 images
Source: https://www.kaggle.com/c/diabetic-retinopathy-detection/overview

Short Description:
Diabetic retinopathy is the leading cause of blindness in the working-age population of the developed world. It is estimated to affect over 93 million people. Currently, detecting DR is a time-consuming and manual process that requires a trained clinician to examine and evaluate digital color fundus photographs of the retina. By the time human readers submit their reviews, often a day or two later, the delayed results lead to lost follow up, miscommunication, and delayed treatment. The need for a comprehensive and automated method of DR screening has long been recognized, and previous efforts have made good progress using image classification, pattern recognition, and machine learning. With color fundus photography as input, the goal of this competition is to push an automated detection system to the limit of what is possible – ideally resulting in models with realistic clinical potential. The winning models will be open sourced to maximize the impact such a model can have on improving DR detection.

Reference:
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview

Colorectal Histology MNIST

Classes: 8 - EMPTY, COMPLEX, MUCOSA, DEBRIS, ADIPOSE, STROMA, LYMPHO, TUMOR
Size: 5.000 images
Source: https://www.kaggle.com/kmader/colorectal-histology-mnist

Short Description:
Automatic recognition of different tissue types in histological images is an essential part in the digital pathology toolbox. Texture analysis is commonly used to address this problem; mainly in the context of estimating the tumour/stroma ratio on histological samples. However, although histological images typically contain more than two tissue types, only few studies have addressed the multi-class problem. For colorectal cancer, one of the most prevalent tumour types, there are in fact no published results on multiclass texture separation. The dataset serves as a much more interesting MNIST or CIFAR10 problem for biologists by focusing on histology tiles from patients with colorectal cancer. In particular, the data has 8 different classes of tissue (but Cancer/Not Cancer can also be an interesting problem).

Reference:
Kather JN, Weis CA, Bianconi F, Melchers SM, Schad LR, Gaiser T, Marx A, Zöllner FG. Multi-class texture analysis in colorectal cancer histology. Sci Rep. 2016 Jun 16;6:27988. doi: 10.1038/srep27988. PMID: 27306927; PMCID: PMC4910082.


Author

Dominik Müller
Email: [email protected]
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany

How to cite / More information

Coming soon

Coming soon

Thank you for citing our work.

License

This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022