Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Related tags

Deep LearningUID-FDK
Overview

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page

This repository provides the official PyTorch implementation of the following paper:

Unsupervised Image Denoising with Frequency Domain Knowledge

Nahyun Kim* (KAIST), Donggon Jang* (KAIST), Sunhyeok Lee (KAIST), Bomi Kim (KAIST), and Dae-Shik Kim (KAIST) (*The authors have equally contributed.)

BMVC 2021, Accepted as Oral Paper.

Abstract: Supervised learning-based methods yield robust denoising results, yet they are inherently limited by the need for large-scale clean/noisy paired datasets. The use of unsupervised denoisers, on the other hand, necessitates a more detailed understanding of the underlying image statistics. In particular, it is well known that apparent differences between clean and noisy images are most prominent on high-frequency bands, justifying the use of low-pass filters as part of conventional image preprocessing steps. However, most learning-based denoising methods utilize only one-sided information from the spatial domain without considering frequency domain information. To address this limitation, in this study we propose a frequency-sensitive unsupervised denoising method. To this end, a generative adversarial network (GAN) is used as a base structure. Subsequently, we include spectral discriminator and frequency reconstruction loss to transfer frequency knowledge into the generator. Results using natural and synthetic datasets indicate that our unsupervised learning method augmented with frequency information achieves state-of-the-art denoising performance, suggesting that frequency domain information could be a viable factor in improving the overall performance of unsupervised learning-based methods.

Requirements

To install requirements:

conda env create -n [your env name] -f environment.yaml
conda activate [your env name]

To train the model

Synthetic Noise (AWGN)

  1. Download DIV2K dataset for training in here
  2. Randomly split the DIV2K dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(DIV2K_C and DIV2K_N) in ./dataset directory.
dataset
└─── DIV2K_C
└─── DIV2K_N
└─── test
  1. Use gen_dataset_synthetic.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/train_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/train_awgn_sigma50.sh # AWGN with a noise level = 50
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

Real-World Noise

  1. Download SIDD-Medium Dataset for training in here
  2. Radnomly split the SIDD-Medium Dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(SIDD_C and SIDD_N) in ./dataset directory.
dataset
└─── SIDD_C
└─── SIDD_N
└─── test
  1. Use gen_dataset_real.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_real.sh
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

To evaluate the model

Synthetic Noise (AWGN)

  1. Download CBSD68 dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/test_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/test_awgn_sigma50.sh # AWGN with a noise level = 50

Real-World Noise

  1. Download the SIDD test dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_real.sh

Pre-trained model

We provide pre-trained models in ./checkpoints directory.

checkpoints
|   AWGN_sigma15.pth # pre-trained model (AWGN with a noise level = 15)
|   AWGN_sigma25.pth # pre-trained model (AWGN with a noise level = 25)
|   AWGN_sigma50.pth # pre-trained model (AWGN with a noise level = 50)
|   SIDD.pth # pre-trained model (Real-World noise)

Acknowledgements

This code is built on U-GAT-IT,CARN, SSD-GAN. We thank the authors for sharing their codes.

Contact

If you have any questions, feel free to contact me ([email protected])

Owner
Donggon Jang
Donggon Jang
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022