CondenseNet V2: Sparse Feature Reactivation for Deep Networks

Overview

CondenseNetV2

This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Yang*, Haojun Jiang*, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang and Qi Tian (* Authors contributed equally).

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Contacts

Introduction

Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency. The recent proposed CondenseNet has shown that this mechanism can be further improved if redundant features are removed. In this paper, we propose an alternative approach named sparse feature reactivation (SFR), aiming at actively increasing the utility of features for reusing. In the proposed network, named CondenseNetV2, each layer can simultaneously learn to 1) selectively reuse a set of most important features from preceding layers; and 2) actively update a set of preceding features to increase their utility for later layers. Our experiments show that the proposed models achieve promising performance on image classification (ImageNet and CIFAR) and object detection (MS COCO) in terms of both theoretical efficiency and practical speed.

Usage

Dependencies

Training

As an example, use the following command to train a CondenseNetV2-A/B/C on ImageNet

python -m torch.distributed.launch --nproc_per_node=8 train.py --model cdnv2_a/b/c 
  --batch-size 1024 --lr 0.4 --warmup-lr 0.1 --warmup-epochs 5 --opt sgd --sched cosine \
  --epochs 350 --weight-decay 4e-5 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 \
  --data_url /PATH/TO/IMAGENET --train_url /PATH/TO/LOG_DIR

Evaluation

We take the ImageNet model trained above as an example.

To evaluate the non-converted trained model, use test.py to evaluate from a given checkpoint path:

python test.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

To evaluate the converted trained model, use --model converted_cdnv2_a/b/c:

python test.py --model converted_cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

Note that these models are still the large models after training. To convert the model to standard group-convolution version as described in the paper, use the convert_and_eval.py:

python convert_and_eval.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 64 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --convert_from /PATH/TO/MODEL_WEIGHT

Results

Results on ImageNet

Model FLOPs Params Top-1 Error Tsinghua Cloud Google Drive
CondenseNetV2-A 46M 2.0M 35.6 Download Download
CondenseNetV2-B 146M 3.6M 28.1 Download Download
CondenseNetV2-C 309M 6.1M 24.1 Download Download

Results on COCO2017 Detection

Detection Framework Backbone Backbone FLOPs mAP
FasterRCNN ShuffleNetV2 0.5x 41M 22.1
FasterRCNN CondenseNetV2-A 46M 23.5
FasterRCNN ShuffleNetV2 1.0x 146M 27.4
FasterRCNN CondenseNetV2-B 146M 27.9
FasterRCNN MobileNet 1.0x 300M 30.6
FasterRCNN ShuffleNetV2 1.5x 299M 30.2
FasterRCNN CondenseNetV2-C 309M 31.4
RetinaNet MobileNet 1.0x 300M 29.7
RetinaNet ShuffleNetV2 1.5x 299M 29.1
RetinaNet CondenseNetV2-C 309M 31.7

Results on CIFAR

Model FLOPs Params CIFAR-10 CIFAR-100
CondenseNet-50 28.6M 0.22M 6.22 -
CondenseNet-74 51.9M 0.41M 5.28 -
CondenseNet-86 65.8M 0.52M 5.06 23.64
CondenseNet-98 81.3M 0.65M 4.83 -
CondenseNet-110 98.2M 0.79M 4.63 -
CondenseNet-122 116.7M 0.95M 4.48 -
CondenseNetV2-110 41M 0.48M 4.65 23.94
CondenseNetV2-146 62M 0.78M 4.35 22.52

Contacts

[email protected] [email protected]

Any discussions or concerns are welcomed!

Citation

If you find our project useful in your research, please consider citing:

@inproceedings{yang2021condensenetv2,
  title={CondenseNet V2: Sparse Feature Reactivation for Deep Networks},
  author={Yang, Le and Jiang, Haojun and Cai, Ruojin and Wang, Yulin and Song, Shiji and Huang, Gao and Tian, Qi},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4321--4330},
  year={2021}
}
Owner
Haojun Jiang
Now a first year PhD in the Department of Automation. My research interest lies in Computer Vision .
Haojun Jiang
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022