Semantic similarity computation with different state-of-the-art metrics

Related tags

Deep LearningTaxoSS
Overview

Semantic similarity computation with different state-of-the-art metrics

DescriptionInstallationUsageLicense


Description

TaxoSS is a semantic similarity library for Python which implements the state-of-the-art semantic similarity metrics like Resnik, JCN, and HSS.

Requirements

  • Python 3.6 or later
  • NLTK
  • NumPy
  • Pandas

Installation

TaxoSS can be installed through pip (the Python package manager) in the following way:

pip install taxoss

Usage

Semantic similarity functions

You can compute the semantic similarity in the following way:

from TaxoSS.functions import semantic_similarity
semantic_similarity('brother', 'sister', 'hss')

3.353513521371089

The function semantic_similarity(word1, word2, kind, ic) has these options for the argument kind:

  • hss -> HSS (default)
  • wup -> WUP
  • lcs -> LC
  • path_sim -> Shortest Path
  • resnik -> Resnik
  • jcn -> Jiang-Conrath
  • lin -> Lin
  • seco -> Seco

For the argument ic see the following section.

Information Content

Using a Wikipedia copus for calculating the Information Content (default of the argument ic):

from TaxoSS.functions import semantic_similarity
semantic_similarity('cat', 'dog', 'resnik')

6.169410755220327

Calculating Information Conent from a given corpus:

from TaxoSS.calculate_IC import calculate_IC
from TaxoSS.functions import semantic_similarity

calculate_IC(path_to_corpus, path_to_save_IC_file)
semantic_similarity('cat', 'dog', 'resnik', path_to_save_IC_file)

with path_to_save_IC_file a path into the virtual environment TaxoSS package, e.g. venv/lib/python3.6/site-packages/TaxoSS/data/prova_IC.csv.

Benchmark

HSS (ours) HSS (ours) WUP WUP LC LC Shortest Path Shortest Path Resnik Resnik Jiang-Conrath Jiang-Conrath Lin Lin Seco Seco
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
MEN 0.41 0.33 0.36 0.33 0.14 0.05 0.07 0.03 0.05 0.03 -0.05 -0.04 0.05 0.04 -0.01 0.03
MC30 0.74 0.69 0.74 0.73 0.33 0.21 0.22 0.3 0.13 0.03 -0.06 -0.01 0.05 0.01 0.13 -0.09
WSS 0.68 0.65 0.58 0.59 0.36 0.23 0.16 0.1 0.02 -0.03 0.04 0.06 0.03 0.06 -0.01 -0.04
Simlex999 0.4 0.38 0.45 0.43 0.26 0.15 0.2 0.16 -0.04 -0.04 0.12 0.14 0.12 0.14 -0.02 -0.08
MT287 0.46 0.31 0.4 0.28 0.26 0.12 0.11 0.11 0.03 0.04 0.18 0.16 0.22 0.17 0 -0.06
MT771 0.44 0.4 0.43 0.49 0.06 0.02 0.1 0.13 0 -0.01 0 0 0 0 -0.05 -0.03
Time per pair (s) 0.0007 0.0007 0.008 0.008 0.0055 0.0055 0.0064 0.0064 0.5586 0.5586 0.551 0.551 0.5866 0.5866 0.0013 0.0013
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022