WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

Related tags

Deep LearningWPPNets
Overview

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

This code belongs to the paper [1] available at https://arxiv.org/abs/2201.08157. Please cite the paper, if you use this code.

The paper [1] is The repository contains an implementation of WPPNets as introduced in [1]. It contains scripts for reproducing the numerical example Texture superresolution in Section 5.2.

Moreover, the file wgenpatex.py is adapted from [2] available at https://github.com/johertrich/Wasserstein_Patch_Prior and is adapted from [3]. Furthermore, the folder model is adapted from [5] available at https://github.com/hellloxiaotian/ACNet.

The folders test_img and training_img contain parts of the textures from [4].

For questions and bug reports, please contact Fabian Altekrueger (fabian.altekrueger(at)hu-berlin.de).

CONTENTS

  1. REQUIREMENTS
  2. USAGE AND EXAMPLES
  3. REFERENCES

1. REQUIREMENTS

The code requires several Python packages. We tested the code with Python 3.9.7 and the following package versions:

  • pytorch 1.10.0
  • matplotlib 3.4.3
  • numpy 1.21.2
  • pykeops 1.5

Usually the code is also compatible with some other versions of the corresponding Python packages.

2. USAGE AND EXAMPLES

You can start the training of the WPPNet by calling the scripts. If you want to load the existing network, please set retrain to False. Checkpoints are saved automatically during training such that the progress of the reconstructions is observable. Feel free to vary the parameters and see what happens.

TEXTURE GRASS

The script run_grass.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] grass which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

TEXTURE FLOOR

The script run_floor.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] Floor which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

3. REFERENCES

[1] F. Altekrueger, J. Hertrich.
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution.
ArXiv Preprint#2201.08157

[2] J. Hertrich, A. Houdard and C. Redenbach.
Wasserstein Patch Prior for Image Superresolution.
ArXiv Preprint#2109.12880

[3] A. Houdard, A. Leclaire, N. Papadakis and J. Rabin.
Wasserstein Generative Models for Patch-based Texture Synthesis.
ArXiv Preprint#2007.03408

[4] G. Kylberg.
The Kylberg texture dataset v. 1.0.
Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, 2011

[5] C. Tian, Y. Xu, W. Zuo, C.-W. Lin, and D. Zhang.
Asymmetric CNN for image superresolution.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.

Owner
Fabian Altekrueger
Fabian Altekrueger
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022