Action Recognition for Self-Driving Cars

Overview

Action Recognition for Self-Driving Cars

demo img

This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at EPFL VITA lab. For experiment results, please refer to the project report and presenation slides at docs. A demo video is available here.

This project utilizes a simple yet effective architecture (called poseact) to classify multiple actions.

The model has been tested on three datasets, TCG, TITAN and CASR.

drawing

Preparation and Installation

This project mainly depends PyTorch. If you wish to start from extracting poses from images, you would also need OpenPifPaf (along with posetrack plugin), please also refer to this section for following steps. In case you wish to skip extracting your own poses, and directly start from the poses used in this repo, you can download this folder. It contains the poses extracted from TITAN and CASR dataset as well as a trained model for TITAN dataset. For the poses in TCG dataset, please refer to the official repo.

First, clone and install this repo. If you have downloaded the folder above, please put the contents to poseact/out/

Then clone this repo and install in editable mode.

git clone https://github.com/vita-epfl/pose-action-recognition.git
cd Action_Recognition
python -m pip install -e .

Project Structure and usage

poseact
	|___ data # create this folder to store your datasets, or create a symlink 
	|___ models 
	|___ test # debug tests, may also be helpful for basic usage
	|___ tools # preprocessing and analyzing tools, usage stated in the scripts 
	|___ utils # utility functions, such as datasets, losses and metrics 
	|___ xxxx_train.py # training scripts for TCG, TITAN and CASR
	|___ python_wrapper.sh # script for submitting jobs to EPFL IZAR cluster, same for debug.sh
	|___ predictor.py  # a visualization tool with the model trained on TITAN dataset 

It's advised to cd poseact and conda activate pytorch before running the experiments.

To submit jobs to EPFL IZAR cluster (or similar clusters managed by slurm), you can use the script python_wrapper.sh. Just think of it as "the python on the cluster". To submit to debug node of IZAR, you can use the debug.sh

Here is an example to train a model on TITAN dataset. --imbalance focal means using the focal loss, --gamma 0 sets the gamma value of focal loss to 0 (because I find 0 is better :=), --merge_cls means selecting a suitable set of actions from the original actions hierarchy, and--relative_kp means using relative coordinates of the keypoints, see the presentation slides for intuition. You can specify a name for this task with --task_name, which will be used to name the saved model if you use --save_model.

sbatch python_wrapper.sh titan_train.py --imbalance focal --gamma 0 --merge_cls --relative_kp --task_name Relative_KP --save_model

To use the temporal model, you can use --model_type sequence, and maybe you will need to adjust the number of epochs, batch size and learning rate. To use pifpaf track ID instead of ground truth track ID, you can use --track_method pifpaf .

sbatch python_wrapper.sh titan_train.py --model_type sequence --num_epoch 100 --imbalance focal --track_method gt --batch_size 128 --gamma 0 --lr 0.001

For all available training options, please refer to the comments and docstrings in the training scripts.

All the datasets have "train-validate-test" setup, so after the training, you should be able to see a summary of evaluation.

Here is an example

In general, overall accuracy 0.8614 avg Jaccard 0.6069 avg F1 0.7409

For valid_action actions accuracy 0.8614 Jaccard score 0.6069 f1 score 0.9192 mAP 0.7911
Precision for each class: [0.885 0.697 0.72  0.715 0.87]
Recall for each class: [0.956 0.458 0.831 0.549 0.811]
F1 score for each class: [0.919 0.553 0.771 0.621 0.839]
Average Precision for each class is [0.9687, 0.6455, 0.8122, 0.6459, 0.883]
Confusion matrix (elements in a row share the same true label, those in the same columns share predicted):
The corresponding classes are {'walking': 0, 'standing': 1, 'sitting': 2, 'bending': 3, 'biking': 4, 'motorcycling': 4}
[[31411  1172    19   142   120]
 [ 3556  3092    12    45    41]
 [   12     1   157     0    19]
 [  231   160     3   512    26]
 [  268     9    27    17  1375]]

After training and saving the model (to out/trained/), you can use the predictor to visualize results on TITAN (all sequences). Feel free to change the chekpoint to your own trained model, but only the file name is needed, because models are assumed to be out/trained

sbatch python_wrapper.sh predictor.py --function titanseqs --save_dir out/recognition --ckpt TITAN_Relative_KP803217.pth

It's also possible to run on a single sequence with --function titan_single --seq_idx <Number>

or run on a single image with --function image --image_path <path/to/your/image.png>

More about the TITAN dataset

For the TITAN dataset, we first extract poses from the images with OpenPifPaf, and then match the poses to groundtruth accoding to IOU of bounding boxes. After that, we store the poses sequence by sequence, frame by frame, person by person, and you will find corresponding classes in titan_dataset.py.

Preparing poses for TITAN and CASR

This part may be a bit cumbersome and it's advised to use the prepared poses in this folder. If you want to extract the poses yourself, please also download that folder, because poseact/out/titan_clip/example.png is needed as the input to OpenPifPaf.

First, install OpenPifPaf and the posetrack plugin.

For TITAN, download the dataset to poseact/data/TITAN and then

cd poseact
conda activate pytorch # activate the python environment
# run single frame pose detection , wait for the program to complete
sbatch python_wrapper.sh tools/run_pifpaf_on_titan.py --mode single --n_process 6
# run pose tracking, required for temporal model with pifpaf track ID, wait for the program to complete
sbatch python_wrapper.sh tools/run_pifpaf_on_titan.py --mode track --n_process 6
# make the pickle file for single frame model 
python utils/titan_dataset.py --function pickle --mode single
# make the pickle file from pifpaf posetrack result
python utils/titan_dataset.py --function pickle --mode track 

For CASR, you should agree with the terms and conditions required by the authors of CASR

CASR dataset needs some preprocessing, please create the folder poseact/scratch (or link to the scratch on IZAR) and then

cd poseact
conda activate pytorch # activate the python environment
sbatch tools/casr_download.sh # wait for the whole process to complete, takes a long time 
sbatch python_wrapper.sh tools/run_pifpaf_on_casr.py --n_process 6 # wait for this process to complete, again a long time 
python ./utils/casr_dataset.py # now you should have the file out/CASR_pifpaf.pkl

Credits

The poses are extracted with OpenPifPaf.

The model is inspired by MonoLoco and the heuristics are from this work

The code for TCG dataset is adopted from the official repo.

Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022