MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Related tags

Deep LearningMVSDF
Overview

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Intro

This is the official implementation for the ICCV 2021 paper Learning Signed Distance Field for Multi-view Surface Reconstruction

In this work, we introduce a novel neural surface reconstruction framework that leverages the knowledge of stereo matching and feature consistency to optimize the implicit surface representation. More specifically, we apply a signed distance field (SDF) and a surface light field to represent the scene geometry and appearance respectively. The SDF is directly supervised by geometry from stereo matching, and is refined by optimizing the multi-view feature consistency and the fidelity of rendered images. Our method is able to improve the robustness of geometry estimation and support reconstruction of complex scene topologies. Extensive experiments have been conducted on DTU, EPFL and Tanks and Temples datasets. Compared to previous state-of-the-art methods, our method achieves better mesh reconstruction in wide open scenes without masks as input.

How to Use

Environment Setup

The code is tested in the following environment (manually installed packages only). The newer version of the packages should also be fine.

dependencies:
  - cudatoolkit=10.2.89
  - numpy=1.19.2
  - python=3.8.8
  - pytorch=1.7.1
  - tqdm=4.60.0
  - pip:
    - cvxpy==1.1.12
    - gputil==1.4.0
    - imageio==2.9.0
    - open3d==0.13.0
    - opencv-python==4.5.1.48
    - pyhocon==0.3.57
    - scikit-image==0.18.3
    - scikit-learn==0.24.2
    - trimesh==3.9.13
    - pybind11==2.9.0

Data Preparation

Download preprocessed DTU datasets from here

Training

cd code
python training/exp_runner.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --batch_size 8 --nepoch 1800 --expname dtu_<SCAN>

The results will be written in exps/mvsdf_dtu_ .

Trained Models

Download trained models and put them in exps folder. This set of models achieve the following results.

Chamfer PSNR
24 0.846 24.67
37 1.894 20.15
40 0.895 25.15
55 0.435 23.19
63 1.067 26.24
65 0.903 26.9
69 0.746 26.54
83 1.241 25.15
97 1.009 25.71
105 1.320 26.48
106 0.867 28.81
110 0.842 23.16
114 0.340 27.51
118 0.472 28.46
122 0.466 27.71
Mean 0.890 25.72

Testing

python evaluation/eval.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --expname dtu_<SCAN> [--eval_rendering]

add --eval_rendering flag to generate and evaluate rendered images. The results will be written in evals/mvsdf_dtu_ .

Trimming

cd mesh_cut
python setup.py build_ext -i  # compile
python mesh_cut.py 
    
    
      [--thresh 15 --smooth 10]

    
   

Note that this part of code can only be used for research purpose. Please refer to mesh_cut/IBFS/license.txt

Evaluation

Apart from the official implementation, you can also use my re-implemented evaluation script.

Citation

If you find our work useful in your research, please kindly cite

@article{zhang2021learning,
	title={Learning Signed Distance Field for Multi-view Surface Reconstruction},
	author={Zhang, Jingyang and Yao, Yao and Quan, Long},
	journal={International Conference on Computer Vision (ICCV)},
	year={2021}
}
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022