Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

Overview

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper]

DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization

Cheng Zhang, Zhaopeng Cui, Cai Chen, Shuaicheng Liu, Bing Zeng, Hujun Bao, Yinda Zhang

teaser pipeline

Introduction

This repo contains data generation, data preprocessing, training, testing, evaluation, visualization code of our ICCV 2021 paper.

Install

Install necessary tools and create conda environment (needs to install anaconda if not available):

sudo apt install xvfb ninja-build freeglut3-dev libglew-dev meshlab
conda env create -f environment.yaml
conda activate Pano3D
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.7/index.html
python project.py build
  • When running python project.py build, the script will run external/build_gaps.sh which requires password for sudo privilege for apt-get install. Please make sure you are running with a user with sudo privilege. If not, please reach your administrator for installation of these libraries and comment out the corresponding lines then run python project.py build.
  • If you encounter /usr/bin/ld: cannot find -lGL problem when building GAPS, please follow this issue.

Since the dataloader loads large number of variables, before training, please follow this to raise the open file descriptor limits of your system. For example, to permanently change the setting, edit /etc/security/limits.conf with a text editor and add the following lines:

*         hard    nofile      500000
*         soft    nofile      500000
root      hard    nofile      500000
root      soft    nofile      500000

Demo

Download the pretrained checkpoints of detector, layout estimation network, and other modules. Then unzip the folder out into the root directory of current project. Since the given checkpoints are trained with current version of our code, which is a refactored version, the results are slightly better than those reported in our paper.

Please run the following command to predict on the given example in demo/input with our full model:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --model.scene_gcn.relation_adjust True --mode test

Or run without relation optimization:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --mode test

The results will be saved to out/pano3d/<demo_id>. If nothing goes wrong, you should get the following results:

rgb.png visual.png
det3d.jpg render.png

Data preparation

Our data is rendered with iGibson. Here, we follow their Installation guide to download iGibson dataset, then render and preprocess the data with our code.

  1. Download iGibson dataset with:

    python -m gibson2.utils.assets_utils --download_ig_dataset
  2. Render panorama with:

    python -m utils.render_igibson_scenes --renders 10 --random_yaw --random_obj --horizon_lo --world_lo

    The rendered dataset should be in data/igibson/.

  3. Make models watertight and render/crop single object image:

    python -m utils.preprocess_igibson_obj --skip_mgn

    The processed results should be in data/igibson_obj/.

  4. (Optional) Before proceeding to the training steps, you could visualize dataset ground-truth of data/igibson/ with:

    python -m utils.visualize_igibson

    Results ('visual.png' and 'render.png') should be saved to folder of each camera like data/igibson/Pomaria_0_int/00007.

Training and Testing

Preparation

  1. We use the pretrained weights of Implicit3DUnderstanding for fine-tuning Bdb3d Estimation Network (BEN) and LIEN+LDIF. Please download the pretrained checkpoint and unzip it into out/total3d/20110611514267/.

  2. We use wandb for logging and visualizing experiments. You can follow their quickstart guide to sign up for a free account and login on your machine with wandb login. The training and testing results will be uploaded to your project "deeppanocontext".

  3. Hint: The <XXX_id> in the commands bellow needs to be replaced with the XXX_id trained in the previous steps.

  4. Hint: In the steps bellow, when training or testing with main.py, you can override yaml configurations with command line parameter:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml --train.epochs 100

    This might be helpful when debugging or tuning hyper-parameters.

First Stage

2D Detector

  1. Train 2D detector (Mask RCNN) with:

    CUDA_VISIBLE_DEVICES=0 python train_detector.py

    The trained weights will be saved to out/detector/detector_mask_rcnn

  2. (Optional) When training 2D detector, you could visualize the training process with:

    tensorboard --logdir out/detector/detector_mask_rcnn --bind_all --port 6006
  3. (Optional) Evaluate with:

    CUDA_VISIBLE_DEVICES=0 python test_detector.py

    The results will be saved to out/detector/detector_mask_rcnn/evaluation_{train/test}. Alternatively, you can visualize the prediction results on test set with:

     CUDA_VISIBLE_DEVICES=0 python test_detector.py --visualize --split test

    The visualization will be saved to the folder where the model weights file is.

  4. (Optional) Visualize BFoV detection results:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/detector_2d_igibson.yaml --mode qtest --log.vis_step 1

    The visualization will be saved to out/detector/<detector_test_id>

Layout Estimation

Train layout estimation network (HorizonNet) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/layout_estimation/<layout_estimation_id>/model_best.pth

Save First Stage Outputs

  1. Save predictions of 2D detector and LEN as dateset for stage 2 training:

    CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/first_stage_igibson.yaml --mode qtest --weight out/layout_estimation/<layout_estimation_id>/model_best.pth

    The first stage outputs should be saved to data/igibson_stage1

  2. (Optional) Visualize stage 1 dataset with:

    python -m utils.visualize_igibson --dataset data/igibson_stage1 --skip_render

Second Stage

Object Reconstruction

Train object reconstruction network (LIEN+LDIF) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/ldif_igibson.yaml

The checkpoint and visualization results will be saved to out/ldif/<ldif_id>.

Bdb3D Estimation

Train bdb3d estimation network (BEN) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/bdb3d_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/bdb3d_estimation/<bdb3d_estimation_id>.

Relation SGCN

  1. Train Relation SGCN without relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --model.scene_gcn.output_relation False --model.scene_gcn.loss BaseLoss --weight out/bdb3d_estimation/<bdb3d_estimation_id>/model_best.pth out/ldif/<ldif_id>/model_best.pth

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_wo_rel_id>.

  2. Train Relation SGCN with relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_wo_rel_id>/model_best.pth --train.epochs 20 

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_id>.

  3. Fine-tune Relation SGCN end-to-end with relation optimization:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_id>/model_best.pth --model.scene_gcn.relation_adjust True --train.batch_size 1 --val.batch_size 1 --device.num_workers 2 --train.freeze shape_encoder shape_decoder --model.scene_gcn.loss_weights.bdb3d_proj 1.0 --model.scene_gcn.optimize_steps 20 --train.epochs 10

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_id>.

Test Full Model

Run:

CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_ro_id>/model_best.pth --log.path out/relation_scene_gcn --resume False --finetune True --model.scene_gcn.relation_adjust True --mode qtest --model.scene_gcn.optimize_steps 100

The visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_test_id>.

Citation

If you find our work and code helpful, please consider cite:

@misc{zhang2021deeppanocontext,
      title={DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization}, 
      author={Cheng Zhang and Zhaopeng Cui and Cai Chen and Shuaicheng Liu and Bing Zeng and Hujun Bao and Yinda Zhang},
      year={2021},
      eprint={2108.10743},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@InProceedings{Zhang_2021_CVPR,
    author    = {Zhang, Cheng and Cui, Zhaopeng and Zhang, Yinda and Zeng, Bing and Pollefeys, Marc and Liu, Shuaicheng},
    title     = {Holistic 3D Scene Understanding From a Single Image With Implicit Representation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {8833-8842}
}

We thank the following great works:

  • Total3DUnderstanding for their well-structured code. We construct our network based on their well-structured code.
  • Coop for their dataset. We used their processed dataset with 2D detector prediction.
  • LDIF for their novel representation method. We ported their LDIF decoder from Tensorflow to PyTorch.
  • Graph R-CNN for their scene graph design. We adopted their GCN implemention to construct our SGCN.
  • Occupancy Networks for their modified version of mesh-fusion pipeline.

If you find them helpful, please cite:

@InProceedings{Nie_2020_CVPR,
author = {Nie, Yinyu and Han, Xiaoguang and Guo, Shihui and Zheng, Yujian and Chang, Jian and Zhang, Jian Jun},
title = {Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{huang2018cooperative,
  title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
  author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  booktitle={Advances in Neural Information Processing Systems},
  pages={206--217},
  year={2018}
}	
@inproceedings{genova2020local,
    title={Local Deep Implicit Functions for 3D Shape},
    author={Genova, Kyle and Cole, Forrester and Sud, Avneesh and Sarna, Aaron and Funkhouser, Thomas},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={4857--4866},
    year={2020}
}
@inproceedings{yang2018graph,
    title={Graph r-cnn for scene graph generation},
    author={Yang, Jianwei and Lu, Jiasen and Lee, Stefan and Batra, Dhruv and Parikh, Devi},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={670--685},
    year={2018}
}
@inproceedings{mescheder2019occupancy,
  title={Occupancy networks: Learning 3d reconstruction in function space},
  author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4460--4470},
  year={2019}
}
Owner
Cheng Zhang
Cheng Zhang of UESTC 电子科技大学 通信学院 章程
Cheng Zhang
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022