Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

Overview

TradingGym

Build Status

TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated the framework form. Not only traning env but also has backtesting and in the future will implement realtime trading env with Interactivate Broker API and so on.

This training env originally design for tickdata, but also support for ohlc data format. WIP.

Installation

git clone https://github.com/Yvictor/TradingGym.git
cd TradingGym
python setup.py install

Getting Started

import random
import numpy as np
import pandas as pd
import trading_env

df = pd.read_hdf('dataset/SGXTW.h5', 'STW')

env = trading_env.make(env_id='training_v1', obs_data_len=256, step_len=128,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'Volume', 
                                      'Ask_price','Bid_price', 
                                      'Ask_deal_vol','Bid_deal_vol',
                                      'Bid/Ask_deal', 'Updown'])

env.reset()
env.render()

state, reward, done, info = env.step(random.randrange(3))

### randow choice action and show the transaction detail
for i in range(500):
    print(i)
    state, reward, done, info = env.step(random.randrange(3))
    print(state, reward)
    env.render()
    if done:
        break
env.transaction_details
  • obs_data_len: observation data length
  • step_len: when call step rolling windows will + step_len
  • df exmaple
index datetime bid ask price volume serial_number dealin
0 2010-05-25 08:45:00 7188.0 7188.0 7188.0 527.0 0.0 0.0
1 2010-05-25 08:45:00 7188.0 7189.0 7189.0 1.0 1.0 1.0
2 2010-05-25 08:45:00 7188.0 7189.0 7188.0 1.0 2.0 -1.0
3 2010-05-25 08:45:00 7188.0 7189.0 7188.0 4.0 3.0 -1.0
4 2010-05-25 08:45:00 7188.0 7189.0 7188.0 2.0 4.0 -1.0
  • df: dataframe that contain data for trading

serial_number -> serial num of deal at each day recalculating

  • fee: when each deal will pay the fee, set with your product.
  • max_position: the max market position for you trading share.
  • deal_col_name: the column name for cucalate reward used.
  • feature_names: list contain the feature columns to use in trading status.

gif

Training

simple dqn

  • WIP

policy gradient

  • WIP

actor-critic

  • WIP

A3C with RNN

  • WIP

Backtesting

  • loading env just like training
env = trading_env.make(env_id='backtest_v1', obs_data_len=1024, step_len=512,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                        feature_names=['Price', 'Volume', 
                                       'Ask_price','Bid_price', 
                                       'Ask_deal_vol','Bid_deal_vol',
                                       'Bid/Ask_deal', 'Updown'])
  • load your own agent
class YourAgent:
    def __init__(self):
        # build your network and so on
        pass
    def choice_action(self, state):
        ## your rule base conditon or your max Qvalue action or Policy Gradient action
         # action=0 -> do nothing
         # action=1 -> buy 1 share
         # action=2 -> sell 1 share
        ## in this testing case we just build a simple random policy 
        return np.random.randint(3)
  • start to backtest
agent = YourAgent()

transactions = []
while not env.backtest_done:
    state = env.backtest()
    done = False
    while not done:
        state, reward, done, info = env.step(agent.choice_action(state))
        #print(state, reward)
        #env.render()
        if done:
            transactions.append(info)
            break
transaction = pd.concate(transactions)
transaction
step datetime transact transact_type price share price_mean position reward_fluc reward reward_sum color rotation
2 1537 2013-04-09 10:58:45 Buy new 277.1 1.0 277.100000 1.0 0.000000e+00 0.000000e+00 0.000000 1 1
5 3073 2013-04-09 11:47:26 Sell cover 276.8 -1.0 277.100000 0.0 -4.000000e-01 -4.000000e-01 -0.400000 2 2
10 5633 2013-04-09 13:23:40 Sell new 276.9 -1.0 276.900000 -1.0 0.000000e+00 0.000000e+00 -0.400000 2 1
11 6145 2013-04-09 13:30:36 Sell new 276.7 -1.0 276.800000 -2.0 1.000000e-01 0.000000e+00 -0.400000 2 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...
211 108545 2013-04-19 13:18:32 Sell new 286.7 -1.0 286.525000 -2.0 -4.500000e-01 0.000000e+00 30.650000 2 1
216 111105 2013-04-19 16:02:01 Sell new 289.2 -1.0 287.416667 -3.0 -5.550000e+00 0.000000e+00 30.650000 2 1
217 111617 2013-04-19 17:54:29 Sell new 289.2 -1.0 287.862500 -4.0 -5.650000e+00 0.000000e+00 30.650000 2 1
218 112129 2013-04-19 21:36:21 Sell new 288.0 -1.0 287.890000 -5.0 -9.500000e-01 0.000000e+00 30.650000 2 1
219 112129 2013-04-19 21:36:21 Buy cover 288.0 5.0 287.890000 0.0 0.000000e+00 -1.050000e+00 29.600000 1 2

128 rows × 13 columns

exmaple of rule base usage

  • ma crossover and crossunder
env = trading_env.make(env_id='backtest_v1', obs_data_len=10, step_len=1,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'MA'])
class MaAgent:
    def __init__(self):
        pass
        
    def choice_action(self, state):
        if state[-1][0] > state[-1][1] and state[-2][0] <= state[-2][1]:
            return 1
        elif state[-1][0] < state[-1][1] and state[-2][0] >= state[-2][1]:
            return 2
        else:
            return 0
# then same as above
Owner
Yvictor
Yvictor
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023