This is the code of using DQN to play Sekiro .

Overview

Update for using DQN to play sekiro 2021.2.2(English Version)

This is the code of using DQN to play Sekiro .

I am very glad to tell that I have writen the codes of using DQN to play Sekiro . As is known to all , Supervised learning can only learn skills from the data we provide for it . However , this time by using Reinforcement Learning , we can see a more clever agent playing Sekiro .

Reinforcement Learning can update its network by itself , using the reward feedback , which means we no longer need to collect our own data sets this time . All the data sets come from the real-time interaction between DQN network and the game. By using this DQN network , you can fight any boss you want in the game . There still something you need to know :

Have fun !

Old version sekiro_tensorflow

Code link for using Supervised learning to play Sekiro : https://github.com/analoganddigital/sekiro_tensorflow

Hello everyone , this is analoganddigital . I use this code to complete an interesting porgram of using machine learning to play Sekiro . You can see the final presentation in https://www.bilibili.com/video/BV1wC4y1s7oa/ . I am a junior student in university , which means I can't spend too much time on this program . What a shame ! On the other hand , many audiences hope me share this code . Thus , I eventually put it on the GitHub . This is an interesting program , and I hope everyone can enjoy it. In addition , I really welcome you to improve this program , to make this AI more smart ! There still something you need to konw:

  • The window size I set is 96*86 , you can change it by yourselves .
  • I finally collected 300M training data , if you want better result , maybe you need to collect more data .
  • I use Alexnet to finish the training . This program is depend on Supervised learning.
  • I have no idea about using Reinforcement learning yet , so I will really appreciate it if someone can help me to overcome this difficulty.(already finished)
  • See the tutorial video for specific code usage , link : https://www.bilibili.com/video/BV1bz4y1R7kB

Reference : https://github.com/Sentdex/pygta5/blob/master/LICENSE

更新——强化学习DQN打只狼 2021.2.2(中文说明)

我非常高兴地告诉大家,我最近又开发出了用DQN强化学习打只狼的代码。 众所周知,监督学习只能学习到我们所提供的数据集的相关技能,但是利用强化学习,我们将看到一个完全不一样的只狼。

强化学习会根据reward奖励进行判断并且自己学习一种打斗方法。更重要的是,我们这次不再需要自己收集数据集了,所有更新数据均来自于DQN网络与游戏的实时交互。 利用这个DQN代码(链接见下方),你可以挑战只狼中任何一个boss,只要boss的血条位置不变即可(因为我采用的是图像抓取的方式获取只狼的血量与boss的血量进行reward判断)。 然后还有一些注意事项:

祝各位玩得愉快!

旧版本用机器学习打只狼

旧版本的利用监督学习打只狼的代码链接: https://github.com/analoganddigital/sekiro_tensorflow

各位观众大家好,我GitHub用户名是analoganddigital。我用这个程序完成了机器学习打只狼这个项目。 最终效果视频可以看b站https://www.bilibili.com/video/BV1wC4y1s7oa/ 。 我是一个大三学生,真的非常抱歉没能长时间更新这个项目,所以我把它放到了GitHub上面,之前很多观众也是私信我想要代码。 总之我还是希望大家能喜欢这个小项目吧。当然,我非常希望大家能帮忙完善这个程序,万分感激,大家共同讨论我们会获益更多,这其实就是开源的意义。现在由于代码比较基础,所以训练效果不太好。我相信大家会有更多的点子,如果能更新一点算法,我们将会看到一个更机智的AI。我很感谢大家对之前视频的支持(受宠若惊),也十分期待大家有趣的优化,就算没有优化直接用也可以。 还有一些细节我这声明一下:

  • 我截取的图像大小是96*86的,各位可以根据自身情况选择。
  • 我最终只收集了300M的数据,如果你想训练效果更好的话,可能要收集更多。
  • 我用的神经网络是Alexnet,基于监督学习完成的。
  • 由于我能力有限,我还没想好如何用强化学习优化算法,所以如果有大佬能分享一下自己的才华,那将十分感谢。(目前已经实现)
  • 具体代码使用方法请见我在b站上发布的机器学习打只狼的教程视频,链接: https://www.bilibili.com/video/BV1bz4y1R7kB

部分参考代码: https://github.com/Sentdex/pygta5/blob/master/LICENSE

Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022