HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

Overview

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

Jungil Kong, Jaehyeon Kim, Jaekyoung Bae

In our paper, we proposed HiFi-GAN: a GAN-based model capable of generating high fidelity speech efficiently.
We provide our implementation and pretrained models as open source in this repository.

Abstract : Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms. Although such methods improve the sampling efficiency and memory usage, their sample quality has not yet reached that of autoregressive and flow-based generative models. In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As speech audio consists of sinusoidal signals with various periods, we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality. A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-spectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times faster than real-time on CPU with comparable quality to an autoregressive counterpart.

Visit our demo website for audio samples.

Pre-requisites

  1. Python >= 3.6
  2. Clone this repository.
  3. Install python requirements. Please refer requirements.txt
  4. Download and extract the LJ Speech dataset. And move all wav files to LJSpeech-1.1/wavs

Training

python train.py --config config_v1.json

To train V2 or V3 Generator, replace config_v1.json with config_v2.json or config_v3.json.
Checkpoints and copy of the configuration file are saved in cp_hifigan directory by default.
You can change the path by adding --checkpoint_path option.

Validation loss during training with V1 generator.
validation loss

Pretrained Model

You can also use pretrained models we provide.
Download pretrained models
Details of each folder are as in follows:

Folder Name Generator Dataset Fine-Tuned
LJ_V1 V1 LJSpeech No
LJ_V2 V2 LJSpeech No
LJ_V3 V3 LJSpeech No
LJ_FT_T2_V1 V1 LJSpeech Yes (Tacotron2)
LJ_FT_T2_V2 V2 LJSpeech Yes (Tacotron2)
LJ_FT_T2_V3 V3 LJSpeech Yes (Tacotron2)
VCTK_V1 V1 VCTK No
VCTK_V2 V2 VCTK No
VCTK_V3 V3 VCTK No
UNIVERSAL_V1 V1 Universal No

We provide the universal model with discriminator weights that can be used as a base for transfer learning to other datasets.

Fine-Tuning

  1. Generate mel-spectrograms in numpy format using Tacotron2 with teacher-forcing.
    The file name of the generated mel-spectrogram should match the audio file and the extension should be .npy.
    Example:
    Audio File : LJ001-0001.wav
    Mel-Spectrogram File : LJ001-0001.npy
    
  2. Create ft_dataset folder and copy the generated mel-spectrogram files into it.
  3. Run the following command.
    python train.py --fine_tuning True --config config_v1.json
    
    For other command line options, please refer to the training section.

Inference from wav file

  1. Make test_files directory and copy wav files into the directory.
  2. Run the following command.
    python inference.py --checkpoint_file [generator checkpoint file path]
    

Generated wav files are saved in generated_files by default.
You can change the path by adding --output_dir option.

Inference for end-to-end speech synthesis

  1. Make test_mel_files directory and copy generated mel-spectrogram files into the directory.
    You can generate mel-spectrograms using Tacotron2, Glow-TTS and so forth.
  2. Run the following command.
    python inference_e2e.py --checkpoint_file [generator checkpoint file path]
    

Generated wav files are saved in generated_files_from_mel by default.
You can change the path by adding --output_dir option.

Acknowledgements

We referred to WaveGlow, MelGAN and Tacotron2 to implement this.

Owner
Rishikesh (ऋषिकेश)
Deep Learning/ AI Researcher | Open Source enthusiast | Text to Speech | Speech Synthesis | Generative Models | Object detection | Language Understanding
Rishikesh (ऋषिकेश)
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023