NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

Overview

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys

in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021

Abstract: Neural architecture search (NAS) has attracted a lot of attention and has been illustrated to bring tangible benefits in a large number of applications in the past few years. Network topology and network size have been regarded as two of the most important aspects for the performance of deep learning models and the community has spawned lots of searching algorithms for both of those aspects of the neural architectures. However, the performance gain from these searching algorithms is achieved under different search spaces and training setups. This makes the overall performance of the algorithms incomparable and the improvement from a sub-module of the searching model unclear. In this paper, we propose NATS-Bench, a unified benchmark on searching for both topology and size, for (almost) any up-to-date NAS algorithm. NATS-Bench includes the search space of 15,625 neural cell candidates for architecture topology and 32,768 for architecture size on three datasets. We analyze the validity of our benchmark in terms of various criteria and performance comparison of all candidates in the search space. We also show the versatility of NATS-Bench by benchmarking 13 recent state-of-the-art NAS algorithms on it. All logs and diagnostic information trained using the same setup for each candidate are provided. This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally effective environment.

You can use pip install nats_bench to install the library of NATS-Bench or install from source by python setup.py install.

If you are seeking how to re-create NATS-Bench from scratch or reproduce benchmarked results, please see use AutoDL-Projects and see these instructions.

If you have questions, please ask at here or email me :)

This figure is the main difference between NATS-Bench, NAS-Bench-101, and NAS-Bench-201. The topology search space ($\mathcal{S}_t$) in NATS-Bench is the same as NAS-Bench-201, while we upgrade with results of more runs for the architecture candidates, and the benchmarked NAS algorithms have better hyperparameters.

Preparation and Download

Step-1: download raw vision datasets. (you can skip this one if you do not use weight-sharing NAS or re-create NATS-Bench).

In NATS-Bench, we (create and) use three image datasets -- CIFAR-10, CIFAR-100, and ImageNet16-120. For more details, please see Sec-3.2 in the NATS-Bench paper. To download these three datasets, please find them at Google Drive. To create the ImageNet16-120 PyTorch dataset, please call AutoDL-Projects/lib/datasets/ImageNet16, by using:

train_data = ImageNet16(root, True , train_transform, 120)
test_data  = ImageNet16(root, False, test_transform , 120)

Step-2: download benchmark files of NATS-Bench.

The latest benchmark file of NATS-Bench can be downloaded from Google Drive. After download NATS-[tss/sss]-[version]-[md5sum]-simple.tar, please uncompress it by using tar xvf [file_name]. We highly recommend to put the downloaded benchmark file (NATS-sss-v1_0-50262.pickle.pbz2 / NATS-tss-v1_0-3ffb9.pickle.pbz2) or uncompressed archive (NATS-sss-v1_0-50262-simple / NATS-tss-v1_0-3ffb9-simple) into $TORCH_HOME. In this way, our api will automatically find the path for these benchmark files, which are convenient for the users. Otherwise, you need to indicate the file when creating the benchmark instance manually.

The history of benchmark files is as follows, tss indicates the topology search space and sss indicates the size search space. The benchmark file is used when creating the NATS-Bench instance with fast_mode=False. The archive is used when fast_mode=True, where archive is a directory containing 15,625 files for tss or contains 32,768 files for sss. Each file contains all the information for a specific architecture candidate. The full archive is similar to archive, while each file in full archive contains the trained weights. Since the full archive is too large, we use split -b 30G file_name file_name to split it into multiple 30G chunks. To merge the chunks into the original full archive, you can use cat file_name* > file_name.

Date benchmark file (tss) archive (tss) full archive (tss) benchmark file (sss) archive (sss) full archive (sss)
2020.08.31 NATS-tss-v1_0-3ffb9.pickle.pbz2 NATS-tss-v1_0-3ffb9-simple.tar NATS-tss-v1_0-3ffb9-full NATS-sss-v1_0-50262.pickle.pbz2 NATS-sss-v1_0-50262-simple.tar NATS-sss-v1_0-50262-full
2021.04.22 (Baidu-Pan) NATS-tss-v1_0-3ffb9.pickle.pbz2 (code: 8duj) NATS-tss-v1_0-3ffb9-simple.tar (code: tu1e) NATS-tss-v1_0-3ffb9-full (code:ssub) NATS-sss-v1_0-50262.pickle.pbz2 (code: za2h) NATS-sss-v1_0-50262-simple.tar (code: e4t9) NATS-sss-v1_0-50262-full (code: htif)

These benchmark files (without pretrained weights) can also be downloaded from Dropbox, OneDrive or Baidu-Pan (extract code: h6pm).

For the full checkpoints in NATS-*ss-*-full, we split the file into multiple parts (NATS-*ss-*-full.tara*) since they are too large to upload. Each file is about 30GB. For Baidu Pan, since they restrict the maximum size of each file, we further split NATS-*ss-*-full.tara* into NATS-*ss-*-full.tara*-aa and NATS-*ss-*-full.tara*-ab. All splits are created by the command split.

Note: if you encounter the quota exceed erros when download from Google Drive, please try to (1) login your personal Google account, (2) right-click-copy the files to your personal Google Drive, and (3) download from your personal Google Drive.

Usage

See more examples at notebooks.

1, create the benchmark instance:

from nats_bench import create
# Create the API instance for the size search space in NATS
api = create(None, 'sss', fast_mode=True, verbose=True)

# Create the API instance for the topology search space in NATS
api = create(None, 'tss', fast_mode=True, verbose=True)

2, query the performance:

# Query the loss / accuracy / time for 1234-th candidate architecture on CIFAR-10
# info is a dict, where you can easily figure out the meaning by key
info = api.get_more_info(1234, 'cifar10')

# Query the flops, params, latency. info is a dict.
info = api.get_cost_info(12, 'cifar10')

# Simulate the training of the 1224-th candidate:
validation_accuracy, latency, time_cost, current_total_time_cost = api.simulate_train_eval(1224, dataset='cifar10', hp='12')

3, create the instance of an architecture candidate in NATS-Bench:

# Create the instance of th 12-th candidate for CIFAR-10.
# To keep NATS-Bench repo concise, we did not include any model-related codes here because they rely on PyTorch.
# The package of [models] is defined at https://github.com/D-X-Y/AutoDL-Projects
#   so that one need to first import this package.
import xautodl
from xautodl.models import get_cell_based_tiny_net
config = api.get_net_config(12, 'cifar10')
network = get_cell_based_tiny_net(config)

# Load the pre-trained weights: params is a dict, where the key is the seed and value is the weights.
params = api.get_net_param(12, 'cifar10', None)
network.load_state_dict(next(iter(params.values())))

4, others:

# Clear the parameters of the 12-th candidate.
api.clear_params(12)

# Reload all information of the 12-th candidate.
api.reload(index=12)

Please see api_test.py for more examples.

from nats_bench import api_test
api_test.test_nats_bench_tss('NATS-tss-v1_0-3ffb9-simple')
api_test.test_nats_bench_tss('NATS-sss-v1_0-50262-simple')

How to Re-create NATS-Bench from Scratch

You need to use the AutoDL-Projects repo to re-create NATS-Bench from scratch.

The Size Search Space

The following command will train all architecture candidate in the size search space with 90 epochs and use the random seed of 777. If you want to use a different number of training epochs, please replace 90 with it, such as 01 or 12.

bash ./scripts/NATS-Bench/train-shapes.sh 00000-32767 90 777

The checkpoint of all candidates are located at output/NATS-Bench-size by default.

After training these candidate architectures, please use the following command to re-organize all checkpoints into the official benchmark file.

python exps/NATS-Bench/sss-collect.py

The Topology Search Space

The following command will train all architecture candidate in the topology search space with 200 epochs and use the random seed of 777/888/999. If you want to use a different number of training epochs, please replace 200 with it, such as 12.

bash scripts/NATS-Bench/train-topology.sh 00000-15624 200 '777 888 999'

The checkpoint of all candidates are located at output/NATS-Bench-topology by default.

After training these candidate architectures, please use the following command to re-organize all checkpoints into the official benchmark file.

python exps/NATS-Bench/tss-collect.py

To Reproduce 13 Baseline NAS Algorithms in NATS-Bench

You need to use the AutoDL-Projects repo to run 13 baseline NAS methods. Here are a brief introduction on how to run each algorithm (NATS-algos).

Reproduce NAS methods on the topology search space

Please use the following commands to run different NAS methods on the topology search space:

Four multi-trial based methods:
python ./exps/NATS-algos/reinforce.py       --dataset cifar100 --search_space tss --learning_rate 0.01
python ./exps/NATS-algos/regularized_ea.py  --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3
python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space tss
python ./exps/NATS-algos/bohb.py            --dataset cifar100 --search_space tss --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3

DARTS (first order):
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1

DARTS (second order):
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v2
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2

GDAS:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo gdas
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16

SETN:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo setn
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn

Random Search with Weight Sharing:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo random
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random

ENAS:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001

Reproduce NAS methods on the size search space

Please use the following commands to run different NAS methods on the size search space:

Four multi-trial based methods:
python ./exps/NATS-algos/reinforce.py       --dataset cifar100 --search_space sss --learning_rate 0.01
python ./exps/NATS-algos/regularized_ea.py  --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3
python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space sss
python ./exps/NATS-algos/bohb.py            --dataset cifar100 --search_space sss --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3


Run Transformable Architecture Search (TAS), proposed in Network Pruning via Transformable Architecture Search, NeurIPS 2019

python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777


Run the channel search strategy in FBNet-V2 -- masking + Gumbel-Softmax :

python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_gumbel --rand_seed 777


Run the channel search strategy in TuNAS -- masking + sampling :

python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777 --use_api 0
python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_rl --arch_weight_decay 0 --rand_seed 777

Final Discovered Architectures for Each Algorithm

The architecture index can be found by use api.query_index_by_arch(architecture_string).

The final discovered architecture ID on CIFAR-10:

DARTS (first order):
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|

DARTS (second order):
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|

GDAS:
|nor_conv_3x3~0|+|nor_conv_3x3~0|none~1|+|nor_conv_1x1~0|nor_conv_3x3~1|nor_conv_3x3~2|
|nor_conv_3x3~0|+|nor_conv_3x3~0|none~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|
|avg_pool_3x3~0|+|nor_conv_3x3~0|skip_connect~1|+|nor_conv_3x3~0|nor_conv_1x1~1|nor_conv_1x1~2|

The final discovered architecture ID on CIFAR-100:

DARTS (V1):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|none~2|
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|none~2|
|skip_connect~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|nor_conv_3x3~2|

DARTS (V2):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|skip_connect~2|
|skip_connect~0|+|nor_conv_3x3~0|none~1|+|skip_connect~0|none~1|none~2|
|skip_connect~0|+|nor_conv_1x1~0|none~1|+|nor_conv_3x3~0|skip_connect~1|none~2|

GDAS:
|nor_conv_3x3~0|+|nor_conv_1x1~0|none~1|+|avg_pool_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|
|avg_pool_3x3~0|+|nor_conv_1x1~0|none~1|+|nor_conv_3x3~0|avg_pool_3x3~1|nor_conv_1x1~2|
|avg_pool_3x3~0|+|nor_conv_3x3~0|none~1|+|nor_conv_3x3~0|nor_conv_1x1~1|nor_conv_1x1~2|

The final discovered architecture ID on ImageNet-16-120:

DARTS (V1):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|nor_conv_1x1~2|

DARTS (V2):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|skip_connect~2|

GDAS:
|none~0|+|none~0|none~1|+|nor_conv_3x3~0|none~1|none~2|
|none~0|+|none~0|none~1|+|nor_conv_3x3~0|none~1|none~2|
|none~0|+|none~0|none~1|+|nor_conv_3x3~0|none~1|none~2|

Others

We use black for Python code formatter. Please use black . -l 120.

Citation

If you find that NATS-Bench helps your research, please consider citing it:

@article{dong2021nats,
  title   = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size},
  author  = {Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan},
  doi     = {10.1109/TPAMI.2021.3054824},
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
  year    = {2021},
  note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}}
}
@inproceedings{dong2020nasbench201,
  title     = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search},
  author    = {Dong, Xuanyi and Yang, Yi},
  booktitle = {International Conference on Learning Representations (ICLR)},
  url       = {https://openreview.net/forum?id=HJxyZkBKDr},
  year      = {2020}
}
Owner
D-X-Y
Research Scientist on AutoDL.
D-X-Y
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022