Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Overview

Render In-between: Motion Guided Video Synthesis for Action Interpolation

[Paper] [Supp] [arXiv] [4min Video]

This is the official Pytorch implementation for our work. Our proposed framework is able to synthesize challenging human videos in an action interpolation setting. This repository contains three subdirectories, including code and scripts for preparing our collected HumanSlomo dataset, the implementation of human motion modeling network trained on the large-scale AMASS dataset, as well as the pose-guided neural rendering model to synthesize video frames from poses. Please check each subfolder for the detailed information and how to execute the code.

HumanSlomo Dataset

We collected a set of high FPS creative commons of human videos from Youtube. The videos are manually split into several continuous clips for training and test. You can also build your video dataset using the provided scripts.

Human Motion Modeling

Our human motion model is trained on a large scale motion capture dataset AMASS. We provide code to synthesize 2D human motion sequences for training from the SMPL parameters defined in AMASS. You can also simply use the pre-trained model to interpolate low-frame-rate noisy human body joints to high-frame-rate motion sequences.

Pose Guided Neural Rendering

The neural rendering model learned to map the pose sequences back to the original video domain. The final result is composed with the background warping from DAIN and the generated human body according to the predicted blending mask autoregressively. The model is trained in a conditional image generation setting, given only low-frame-rate videos as training data. Therefore, you can train your custom neural rendering model by constructing your own video dataset.

Quick Start

⬇️ example.zip [MEGA] (25.4MB)

Download this example action clip which includes necessary input files for our pipeline.

The first step is generating high FPS motion from low FPS poses with our motion modeling network.

cd Human_Motion_Modelling
python inference.py --pose-dir ../example/input_poses --save-dir ../example/ --upsample-rate 2

⬇️ checkpoints.zip [MEGA] (147.2MB)

Next we will map high FPS poses back to video frames with our pose-guided neural rendering. Download the checkpoint files to the corresponding folder to run the model.

cd Pose_Guided_Neural_Rendering
python inference.py --input-dir ../example/ --save-dir ../example/

Citation

@inproceedings{ho2021render,
    author = {Hsuan-I Ho, Xu Chen, Jie Song, Otmar Hilliges},
    title = {Render In-between: Motion GuidedVideo Synthesis for Action Interpolation},
    booktitle = {BMVC},
    year = {2021}
}

Acknowledgement

We use the pre-processing code in AMASS to synthesize our motion dataset. AlphaPose is used for generating 2D human body poses. DAIN is used for warping background images. Our human motion modeling network is based on the transformer backbone in DERT. Our pose-guided neural rendering model is based on imaginaire. We sincerely thank these authors for their awesome work.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022