Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Overview

Render In-between: Motion Guided Video Synthesis for Action Interpolation

[Paper] [Supp] [arXiv] [4min Video]

This is the official Pytorch implementation for our work. Our proposed framework is able to synthesize challenging human videos in an action interpolation setting. This repository contains three subdirectories, including code and scripts for preparing our collected HumanSlomo dataset, the implementation of human motion modeling network trained on the large-scale AMASS dataset, as well as the pose-guided neural rendering model to synthesize video frames from poses. Please check each subfolder for the detailed information and how to execute the code.

HumanSlomo Dataset

We collected a set of high FPS creative commons of human videos from Youtube. The videos are manually split into several continuous clips for training and test. You can also build your video dataset using the provided scripts.

Human Motion Modeling

Our human motion model is trained on a large scale motion capture dataset AMASS. We provide code to synthesize 2D human motion sequences for training from the SMPL parameters defined in AMASS. You can also simply use the pre-trained model to interpolate low-frame-rate noisy human body joints to high-frame-rate motion sequences.

Pose Guided Neural Rendering

The neural rendering model learned to map the pose sequences back to the original video domain. The final result is composed with the background warping from DAIN and the generated human body according to the predicted blending mask autoregressively. The model is trained in a conditional image generation setting, given only low-frame-rate videos as training data. Therefore, you can train your custom neural rendering model by constructing your own video dataset.

Quick Start

⬇️ example.zip [MEGA] (25.4MB)

Download this example action clip which includes necessary input files for our pipeline.

The first step is generating high FPS motion from low FPS poses with our motion modeling network.

cd Human_Motion_Modelling
python inference.py --pose-dir ../example/input_poses --save-dir ../example/ --upsample-rate 2

⬇️ checkpoints.zip [MEGA] (147.2MB)

Next we will map high FPS poses back to video frames with our pose-guided neural rendering. Download the checkpoint files to the corresponding folder to run the model.

cd Pose_Guided_Neural_Rendering
python inference.py --input-dir ../example/ --save-dir ../example/

Citation

@inproceedings{ho2021render,
    author = {Hsuan-I Ho, Xu Chen, Jie Song, Otmar Hilliges},
    title = {Render In-between: Motion GuidedVideo Synthesis for Action Interpolation},
    booktitle = {BMVC},
    year = {2021}
}

Acknowledgement

We use the pre-processing code in AMASS to synthesize our motion dataset. AlphaPose is used for generating 2D human body poses. DAIN is used for warping background images. Our human motion modeling network is based on the transformer backbone in DERT. Our pose-guided neural rendering model is based on imaginaire. We sincerely thank these authors for their awesome work.

Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021