This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

Overview

DeepLab-ResNet-TensorFlow

This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

Updates

29 Jan, 2017:

  • Fixed the implementation of the batch normalisation layer: it now supports both the training and inference steps. If the flag --is-training is provided, the running means and variances will be updated; otherwise, they will be kept intact. The .ckpt files have been updated accordingly - to download please refer to the new link provided below.
  • Image summaries during the training process can now be seen using TensorBoard.
  • Fixed the evaluation procedure: the 'void' label (255) is now correctly ignored. As a result, the performance score on the validation set has increased to 80.1%.

Model Description

The DeepLab-ResNet is built on a fully convolutional variant of ResNet-101 with atrous (dilated) convolutions, atrous spatial pyramid pooling, and multi-scale inputs (not implemented here).

The model is trained on a mini-batch of images and corresponding ground truth masks with the softmax classifier at the top. During training, the masks are downsampled to match the size of the output from the network; during inference, to acquire the output of the same size as the input, bilinear upsampling is applied. The final segmentation mask is computed using argmax over the logits. Optionally, a fully-connected probabilistic graphical model, namely, CRF, can be applied to refine the final predictions. On the test set of PASCAL VOC, the model achieves 79.7% of mean intersection-over-union.

For more details on the underlying model please refer to the following paper:

@article{CP2016Deeplab,
  title={DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs},
  author={Liang-Chieh Chen and George Papandreou and Iasonas Kokkinos and Kevin Murphy and Alan L Yuille},
  journal={arXiv:1606.00915},
  year={2016}
}

Requirements

TensorFlow needs to be installed before running the scripts. TensorFlow 0.12 is supported; for TensorFlow 0.11 please refer to this branch.

To install the required python packages (except TensorFlow), run

pip install -r requirements.txt

or for a local installation

pip install -user -r requirements.txt

Caffe to TensorFlow conversion

To imitate the structure of the model, we have used .caffemodel files provided by the authors. The conversion has been performed using Caffe to TensorFlow with an additional configuration for atrous convolution and batch normalisation (since the batch normalisation provided by Caffe-tensorflow only supports inference). There is no need to perform the conversion yourself as you can download the already converted models - deeplab_resnet.ckpt (pre-trained) and deeplab_resnet_init.ckpt (the last layers are randomly initialised) - here.

Nevertheless, it is easy to perform the conversion manually, given that the appropriate .caffemodel file has been downloaded, and Caffe to TensorFlow dependencies have been installed. The Caffe model definition is provided in misc/deploy.prototxt. To extract weights from .caffemodel, run the following:

python convert.py /path/to/deploy/prototxt --caffemodel /path/to/caffemodel --data-output-path /where/to/save/numpy/weights

As a result of running the command above, the model weights will be stored in /where/to/save/numpy/weights. To convert them to the native TensorFlow format (.ckpt), simply execute:

python npy2ckpt.py /where/to/save/numpy/weights --save-dir=/where/to/save/ckpt/weights

Dataset and Training

To train the network, one can use the augmented PASCAL VOC 2012 dataset with 10582 images for training and 1449 images for validation.

The training script allows to monitor the progress in the optimisation process using TensorBoard's image summary. Besides that, one can also exploit random scaling of the inputs during training as a means for data augmentation. For example, to train the model from scratch with random scale turned on, simply run:

python train.py --random-scale

To see the documentation on each of the training settings run the following:

python train.py --help

An additional script, fine_tune.py, demonstrates how to train only the last layers of the network.

Evaluation

The single-scale model shows 80.1% mIoU on the Pascal VOC 2012 validation dataset. No post-processing step with CRF is applied.

The following command provides the description of each of the evaluation settings:

python evaluate.py --help

Inference

To perform inference over your own images, use the following command:

python inference.py /path/to/your/image /path/to/ckpt/file

This will run the forward pass and save the resulted mask with this colour map:

Missing features

At the moment, the post-processing step with CRF is not implemented. Besides that, multi-scale inputs are missing, as well. No weight regularisation is applied.

Other implementations

Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022