Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

Related tags

Deep Learning1xN
Overview

1xN Pattern for Pruning Convolutional Neural Networks (paper) .

This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Networks". A more formal project will be released as soon as we are given the authority from Alibaba Group.

1) 1×N Block Pruning

Requirements

  • Python 3.7
  • Pytorch >= 1.0.1
  • CUDA = 10.0.0

Code Running

To reproduce our experiments, please use the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--job_dir ./experiment/ \
--data_path [DATA_PATH] \
--pretrained_model [PRETRAIN_MODEL_PATH] \
--pr_target 0.5 \
--N 4 (or 2, 8, 16, 32) \
--conv_type BlockL1Conv \
--train_batch_size 256 \
--eval_batch_size 256 \
--rearrange \

Accuracy Performance

Table 1: Performance comparison of our 1×N block sparsity against weight pruning and filter pruning (p = 50%).

MobileNet-V1 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 70.764 89.592 Pruned Model
Filter Pruning 65.348 86.264 Pruned Model
1 x 2 Block 70.281 89.370 Pruned Model
1 x 4 Block 70.052 89.056 Pruned Model
1 x 8 Block 69.908 89.027 Pruned Model
1 x 16 Block 69.559 88.933 Pruned Model
1 x 32 Block 69.541 88.801 Pruned Model
MobileNet-V2 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 71.146 89.872 Pruned Model
Filter Pruning 66.730 87.190 Pruned Model
1 x 2 Block 70.233 89.417 Pruned Model
1 x 4 Block 60.706 89.165 Pruned Model
1 x 8 Block 69.372 88.862 Pruned Model
1 x 16 Block 69.352 88.708 Pruned Model
1 x 32 Block 68.762 88.425 Pruned Model
MobileNet-V3-small Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 66.376 86.868 Pruned Model
Filter Pruning 59.054 81.713 Pruned Model
1 x 2 Block 65.380 86.060 Pruned Model
1 x 4 Block 64.465 85.495 Pruned Model
1 x 8 Block 64.101 85.274 Pruned Model
1 x 16 Block 63.126 84.203 Pruned Model
1 x 32 Block 62.881 83.982 Pruned Model
MobileNet-V3-large Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 72.897 91.093 Pruned Model
Filter Pruning 69.137 89.097 Pruned Model
1 x 2 Block 72.120 90.677 Pruned Model
1 x 4 Block 71.935 90.458 Pruned Model
1 x 8 Block 71.478 90.163 Pruned Model
1 x 16 Block 71.112 90.129 Pruned Model
1 x 32 Block 70.769 89.696 Pruned Model

More links for pruned models under different pruning rates and their training logs can be found in MobileNet-V2 and ResNet-50.

Evaluate our models

To verify the performance of our pruned models, download our pruned models from the links provided above and run the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--data_path [DATA_PATH] \
--conv_type DenseConv \
--evaluate [PRUNED_MODEL_PATH] \
--eval_batch_size 256 \

Arguments

optional arguments:
  -h, --help            show this help message and exit
  --gpus                Select gpu_id to use. default:[0]
  --data_path           The dictionary where the data is stored.
  --job_dir             The directory where the summaries will be stored.
  --resume              Load the model from the specified checkpoint.
  --pretrain_model      Path of the pre-trained model.
  --pruned_model        Path of the pruned model to evaluate.
  --arch                Architecture of model. For ImageNet :mobilenet_v1, mobilenet_v2, mobilenet_v3_small, mobilenet_v3_large
  --num_epochs          The num of epochs to train. default:180
  --train_batch_size    Batch size for training. default:256
  --eval_batch_size     Batch size for validation. default:100
  --momentum            Momentum for Momentum Optimizer. default:0.9
  --lr LR               Learning rate. default:1e-2
  --lr_decay_step       The iterval of learn rate decay for cifar. default:100 150
  --lr_decay_freq       The frequecy of learn rate decay for Imagenet. default:30
  --weight_decay        The weight decay of loss. default:4e-5
  --lr_type             lr scheduler. default: cos. optional:exp/cos/step/fixed
  --use_dali            If this parameter exists, use dali module to load ImageNet data (benefit in training acceleration).
  --conv_type           Importance criterion of filters. Default: BlockL1Conv. optional: BlockRandomConv, DenseConv
  --pr_target           Pruning rate. default:0.5
  --full                If this parameter exists, prune fully-connected layer.
  --N                   Consecutive N kernels for removal (see paper for details).
  --rearrange           If this parameter exists, filters will be rearranged (see paper for details).
  --export_onnx         If this parameter exists, export onnx model.

2)Filter Rearrangement

Table 2: Performance studies of our 1×N block sparsity with and without filter rearrangement (p=50%).

N = 2 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.900 89.296 Pruned Model
Rearrange 70.233 89.417 Pruned Model
N = 4 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.521 88.920 Pruned Model
Rearrange 69.579 88.944 Pruned Model
N = 8 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.206 88.608 Pruned Model
Rearrange 69.372 88.862 Pruned Model
N = 16 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.971 88.399 Pruned Model
Rearrange 69.352 88.708 Pruned Model
N = 32 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.431 88.315 Pruned Model
Rearrange 68.762 88.425 Pruned Model

3)Encoding and Decoding Efficiency

Performance and latency comparison

Our sparse convolution implementation has been released to TVM community.

To verify the performance of our pruned models, convert onnx model and run the following command:

python model_tune.py \
--onnx_path [ONNX_MODEL_PATH] \
--bsr 4 \
--bsc 1 \
--sparsity 0.5

The detail tuning setting is referred to TVM.

4)Contact

Any problem regarding this code re-implementation, please contact the first author: [email protected] or the third author: [email protected].

Any problem regarding the sparse convolution implementation, please contact the second author: [email protected].

Owner
Mingbao Lin (林明宝)
I am currently a final-year Ph.D student.
Mingbao Lin (林明宝)
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022