General purpose Slater-Koster tight-binding code for electronic structure calculations

Overview

tight-binder

Introduction

General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code is yet to be finished: so far the modules include the strictly necessary routines to compute band structures without additional information. It is designed to allow band structure calculations of alloys up to two atomic species (provided one gives the corresponding SK amplitudes).

The idea behind the program is to allow calculations simply using the configuration file, without any need to fiddle with the code (although that option is always available). Some examples are provided (cube.txt, chain.txt) which show the parameters needed to run a simulation.

  • Last Update: Added spin-orbit coupling up to d orbitals

Installation

Usage of a virtual environment is recommended to avoid conflicts, specially since this package is still in development so it will experiment changes periodically.

  • From within the root folder of the repository, install the required packages:
$ cd {path}/tightbinder
$ pip install -r requirements.txt
  • Then install the tightbinder package
$ pip install .
  • You can use the application from within the repository, using the bin/app.py program in the following fashion:
$ python bin/app.py {config_file} 

Or since the library is installed, create your own scripts. For now, usage of the app.py program is advised.

Documentation

To generate the documentation, you must have installed GNU Make previously. To do so, simply $ cd docs/source and run $ make html. The documentation will then be created in docs/build/html.

Examples

The folder examples/ contains some basic cases to test that the program is working correcly.

  • One-dimensional chain (1 orbital): To run the example do $ python bin/app.py examples/chain.txt

This model is analytically solvable, its band dispersion relation is:

alt text

  • Bi(111) bilayer: To run it: $python bin/app.py examples/bi(111).txt In this case we use a four-orbital model (s, px, py and pz). Since we are modelling a real material, we need to input some valid Slater-Koster coefficients as well as the spin-orbit coupling amplitude. These are given in [1, 2].

The resulting band structure is:

alt text

Bi(111) bilayers are known to be topological insulators. To confirm this, one can use the routines provided in the topology module to calculate its invariant.

To do so, we can compute its hybrid Wannier centre flow, which results to be:

alt text

The crossing of the red dots indicates that the material is topological. For more complex cases, there is a routine implemented to automatize the counting of crossings, based on [3].

Workroad

The future updates will be:

  • hamiltonian.py: Module for inititializing and solving the Hamiltonian of the system given in the config. file
  • topology.py: This module will include routines for computing topological invariants of the system. (19/12/20) Z2 invariant routines added. It remains to fix routines related to Chern invariant.
  • disorder.py: Module with routines to introduce disorder in the system such as vacancies or impurities

A working GUI might be done in the future

References

Owner
PhD student in Physics
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022