Automatic meme generation model using Tensorflow Keras.

Overview

Memefly

You can find the project at MemeflyAI.

Contributors

Nick Buukhalter Harsh Desai Han Lee

MIT Python Tensorflow Tensorflow Serving Docker

Project Overview

Trello Board

Product Canvas

Automatic meme generation model using Tensorflow Keras. Model is Dockerized and served as a REST API with FastAPI/uvicorn ASGI endpoint. A separate serving model serving is done with a combination of FastAPI/uvicorn ASGI endpoint with models served using Tensorflow Serving on Sagemaker.

Tech Stack

Python Packages

  • Numpy
  • Pandas
  • Tensorflow
  • FastAPI
  • Selenium

DevOps

  • Tensorflow Serving
  • Docker
  • MySQL
  • MongoDB
  • AWS ECR
  • AWS Elastic Beanstalk
  • AWS S3
  • AWS Sagemaker

Architecture

memefly_architecture

Predictions

We used an encoder-decoder architecture for the meme generation task. Pre-trained Inception V3 architecture and weights are used as the encoder to extract embeddings from an input image. At the same time, we encode the texts into text embeddings and concat them together with image embeddings. For the decoder, we used GRU to to map the image and text embeddings to predict the next word in the text string.

At training time, we repeat the same image embeddings as input and send in text sequences in order, e.g., 0. this, 1. this is, 2. this is a, 3. this is a sequence. The model will try to predict the next word in the sequence given the input image embedding and text embeddings. We denote the beginning and the end of a text sequence with startseq and endseq.

At inferencing time, we send in image embeddings and the seed token startseq to the model, and then repeatly send in the image embeddings and the prediction output of the previous timestep, until either we see endseq or reach maximum sentence length. To improve the quality of the output, we used beam search to greedily select the best N sentences. But it has to be noted that beam search is neither optimal nor complete algorithm.

To increase varieties, we tried 1) adding Guassian noise to the input image and 2) choosing top N sentence scores using beam search.

The architecture is summarized here:

architecture

In-sample Meme

in-sample

Out-of-sample Meme

out-of-sample

Batch Example Outputs

memes

Explanatory Variables

  • Image
  • Text

Data Sources

Please see Data Engineering for details.

Python Notebooks

Training Notebook

Inferencing Notebook

How to connect to the web API

Please see Machine Learning Engineering - Deployment for details.

How to connect to the data API

Please see Data Engineering for details.

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue, email, or any other method with the owners of this repository before making a change.

Please note we have a code of conduct. Please follow it in all your interactions with the project.

Issue/Bug Request

If you are having an issue with the existing project code, please submit a bug report under the following guidelines:

  • Check first to see if your issue has already been reported.
  • Check to see if the issue has recently been fixed by attempting to reproduce the issue using the latest master branch in the repository.
  • Create a live example of the problem.
  • Submit a detailed bug report including your environment & browser, steps to reproduce the issue, actual and expected outcomes, where you believe the issue is originating from, and any potential solutions you have considered.

Feature Requests

We would love to hear from you about new features which would improve this app and further the aims of our project. Please provide as much detail and information as possible to show us why you think your new feature should be implemented.

Pull Requests

If you have developed a patch, bug fix, or new feature that would improve this app, please submit a pull request. It is best to communicate your ideas with the developers first before investing a great deal of time into a pull request to ensure that it will mesh smoothly with the project.

Remember that this project is licensed under the MIT license, and by submitting a pull request, you agree that your work will be, too.

Pull Request Guidelines

  • Ensure any install or build dependencies are removed before the end of the layer when doing a build.
  • Update the README.md with details of changes to the interface, including new plist variables, exposed ports, useful file locations and container parameters.
  • Ensure that your code conforms to our existing code conventions and test coverage.
  • Include the relevant issue number, if applicable.
  • You may merge the Pull Request in once you have the sign-off of two other developers, or if you do not have permission to do that, you may request the second reviewer to merge it for you.

Attribution

These contribution guidelines have been adapted from this good-Contributing.md-template.

Documentation

See Data Engineering for details on the data engineering of our project.

See Machine Learning Engineering - Training for details on the training part of our project.

See Machine Learning Engineering - Deployment for details on the deployment of our project.

Owner
BloomTech Labs
We are the Bloom Institute of Technology's Labs Organization, hosting the products our learners build during their time in BloomTech Labs.
BloomTech Labs
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023