The easiest tool for extracting radiomics features and training ML models on them.

Overview


ClassyRadiomics

License CI Build codecov

Simple pipeline for experimenting with radiomics features

Installation

git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git
cd classrad
pip install -e .

Example - Hydronephrosis detection from CT images:

Extract radiomics features and save them to CSV table

df = pd.read_csv(table_dir / "paths.csv")
extractor = FeatureExtractor(
    df=df,
    out_path=(table_dir / "features.csv"),
    image_col="img_path",
    mask_col="seg_path",
    verbose=True,
)
extractor.extract_features()

Create a dataset from the features table

feature_df = pd.read_csv(table_dir / "features.csv")
data = Dataset(
    dataframe=feature_df,
    features=feature_cols,
    target=label_col="Hydronephrosis",
    task_name="Hydronephrosis detection"
)
data.cross_validation_split_test_from_column(
    column_name="cohort", test_value="control"
)

Select classifiers to compare

classifier_names = [
    "Gaussian Process Classifier",
    "Logistic Regression",
    "SVM",
    "Random Forest",
    "XGBoost",
]
classifiers = [MLClassifier(name) for name in classifier_names]

Create an evaluator to train and evaluate selected classifiers

evaluator = Evaluator(dataset=data, models=classifiers)
evaluator.evaluate_cross_validation()
evaluator.boxplot_by_class()
evaluator.plot_all_cross_validation()
evaluator.plot_test()
Comments
  • Preprocessing features fails during machine learning

    Preprocessing features fails during machine learning

    Describe the bug

    Trying to use Machine Learning in the self-hosted webapp, as well as in example_WORC.ipynb fails.

    Steps/Code to Reproduce

    import pandas as pd
    from pathlib import Path
    from autorad.external.download_WORC import download_WORCDatabase
    
    # Set where we will save our data and results
    base_dir = Path.cwd() / "autorad_tutorial"
    data_dir = base_dir / "data"
    result_dir = base_dir / "results"
    data_dir.mkdir(exist_ok=True, parents=True)
    result_dir.mkdir(exist_ok=True, parents=True)
    
    %load_ext autoreload
    %autoreload 2
    
    download data (it may take a few minutes)
    download_WORCDatabase(
    dataset="Desmoid",
    data_folder=data_dir,
    n_subjects=100,
    )
    
    from autorad.utils.preprocessing import get_paths_with_separate_folder_per_case
    
    # create a table with all the paths
    paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    paths_df.sample(5)
    
    
    from autorad.data.dataset import ImageDataset
    from autorad.feature_extraction.extractor import FeatureExtractor
    import logging
    
    logging.getLogger().setLevel(logging.CRITICAL)
    
    image_dataset = ImageDataset(
        paths_df,
        ID_colname="ID",
        root_dir=data_dir,
    )
    
    # Let's take a look at the data, plotting random 10 cases
    image_dataset.plot_examples(n=10, window=None)
    
    extractor = FeatureExtractor(image_dataset, extraction_params="MR_default.yaml")
    feature_df = extractor.run()
    
    feature_df.head()
    
    label_df = pd.read_csv(data_dir / "labels.csv")
    label_df.sample(5)
    
    from autorad.data.dataset import FeatureDataset
    
    merged_feature_df = feature_df.merge(label_df, left_on="ID",
        right_on="patient_ID", how="left")
    feature_dataset = FeatureDataset(
        merged_feature_df,
        target="diagnosis",
        ID_colname="ID"
    )
    
    splits_path = result_dir / "splits.json"
    feature_dataset.split(method="train_val_test", save_path=splits_path)
    
    from autorad.models.classifier import MLClassifier
    from autorad.training.trainer import Trainer
    
    models = MLClassifier.initialize_default_sklearn_models()
    print(models)
    
    trainer = Trainer(
        dataset=feature_dataset,
        models=models,
        result_dir=result_dir,
        experiment_name="Fibromatosis_vs_sarcoma_classification",
    )
    trainer.run_auto_preprocessing(
            selection_methods=["boruta"],
            oversampling=False,
            )
    
    

    Expected Results

    Initialising the trainer and running preprocessing on the features

    Actual Results

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Input In [15], in <cell line: 7>()
          1 trainer = Trainer(
          2     dataset=feature_dataset,
          3     models=models,
          4     result_dir=result_dir,
          5     experiment_name="Fibromatosis_vs_sarcoma_classification",
          6 )
    ----> 7 trainer.run_auto_preprocessing(
          8         selection_methods=["boruta"],
          9         oversampling=False,
         10         )
    
    File ~/AutoRadiomics/autorad/training/trainer.py:78, in Trainer.run_auto_preprocessing(self, oversampling, selection_methods)
         70 preprocessor = Preprocessor(
         71     normalize=True,
         72     feature_selection_method=selection_method,
         73     oversampling_method=oversampling_method,
         74 )
         75 try:
         76     preprocessed[selection_method][
         77         oversampling_method
    ---> 78     ] = preprocessor.fit_transform(self.dataset.data)
         79 except AssertionError:
         80     log.error(
         81         f"Preprocessing with {selection_method} and {oversampling_method} failed."
         82     )
    
    File ~/AutoRadiomics/autorad/preprocessing/preprocessor.py:66, in Preprocessor.fit_transform(self, data)
         64 result_y = {}
         65 all_features = X.train.columns.tolist()
    ---> 66 X_train_trans, y_train_trans = self.pipeline.fit_transform(
         67     X.train, y.train
         68 )
         69 self.selected_features = self.pipeline["select"].selected_features(
         70     column_names=all_features
         71 )
         72 result_X["train"] = pd.DataFrame(
         73     X_train_trans, columns=self.selected_features
         74 )
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/pipeline.py:434, in Pipeline.fit_transform(self, X, y, **fit_params)
        432 fit_params_last_step = fit_params_steps[self.steps[-1][0]]
        433 if hasattr(last_step, "fit_transform"):
    --> 434     return last_step.fit_transform(Xt, y, **fit_params_last_step)
        435 else:
        436     return last_step.fit(Xt, y, **fit_params_last_step).transform(Xt)
    
    File ~/AutoRadiomics/autorad/feature_selection/selector.py:47, in CoreSelector.fit_transform(self, X, y)
         44 def fit_transform(
         45     self, X: np.ndarray, y: np.ndarray
         46 ) -> tuple[np.ndarray, np.ndarray]:
    ---> 47     self.fit(X, y)
         48     return X[:, self.selected_columns], y
    
    File ~/AutoRadiomics/autorad/feature_selection/selector.py:124, in BorutaSelector.fit(self, X, y, verbose)
        122 with warnings.catch_warnings():
        123     warnings.simplefilter("ignore")
    --> 124     model.fit(X, y)
        125 self.selected_columns = np.where(model.support_)[0].tolist()
        126 if not self.selected_columns:
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:201, in BorutaPy.fit(self, X, y)
        188 def fit(self, X, y):
        189     """
        190     Fits the Boruta feature selection with the provided estimator.
        191 
       (...)
        198         The target values.
        199     """
    --> 201     return self._fit(X, y)
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:251, in BorutaPy._fit(self, X, y)
        249 def _fit(self, X, y):
        250     # check input params
    --> 251     self._check_params(X, y)
        252     self.random_state = check_random_state(self.random_state)
        253     # setup variables for Boruta
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:517, in BorutaPy._check_params(self, X, y)
        513 """
        514 Check hyperparameters as well as X and y before proceeding with fit.
        515 """
        516 # check X and y are consistent len, X is Array and y is column
    --> 517 X, y = check_X_y(X, y)
        518 if self.perc <= 0 or self.perc > 100:
        519     raise ValueError('The percentile should be between 0 and 100.')
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/utils/validation.py:964, in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
        961 if y is None:
        962     raise ValueError("y cannot be None")
    --> 964 X = check_array(
        965     X,
        966     accept_sparse=accept_sparse,
        967     accept_large_sparse=accept_large_sparse,
        968     dtype=dtype,
        969     order=order,
        970     copy=copy,
        971     force_all_finite=force_all_finite,
        972     ensure_2d=ensure_2d,
        973     allow_nd=allow_nd,
        974     ensure_min_samples=ensure_min_samples,
        975     ensure_min_features=ensure_min_features,
        976     estimator=estimator,
        977 )
        979 y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric)
        981 check_consistent_length(X, y)
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/utils/validation.py:746, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
        744         array = array.astype(dtype, casting="unsafe", copy=False)
        745     else:
    --> 746         array = np.asarray(array, order=order, dtype=dtype)
        747 except ComplexWarning as complex_warning:
        748     raise ValueError(
        749         "Complex data not supported\n{}\n".format(array)
        750     ) from complex_warning
    
    ValueError: could not broadcast input array from shape (60,1015) into shape (60,)
    
    opened by wagon-master 3
  • BUG: Time and memory inefficient concating in pandas on every case.

    BUG: Time and memory inefficient concating in pandas on every case.

    In the feature extraction, we concat a pd.DataFrame for every case. AFAIK this construction of a pd.DataFrame leads to a new memory allocation (and copying) every time, which is highly memory inefficient. Especially, when parallelized on many CPUs, combined with the already memory intensive forking in joblib this can lead to OOM-Events (and is slow of course). Wouldn't it be more convenient to return only the feature set, that is currently processed. https://github.com/pwoznicki/AutoRadiomics/blob/e475893c566de057d742f32da5cb9ece23a44eb0/autorad/feature_extraction/extractor.py#L109-L115 These are subsequently collected in results anyways: https://github.com/pwoznicki/AutoRadiomics/blob/e475893c566de057d742f32da5cb9ece23a44eb0/autorad/feature_extraction/extractor.py#L135-L144

    opened by laqua-stack 2
  • Feature/add inference mlflow

    Feature/add inference mlflow

    Major changes:

    • fixed training with autologging of training parameters, preprocessor and classifier in MLFlow
    • webapp: added Predict subpage for inference on a single case, giving out class probability and Shap explanation
    • webapp: moved all steps into subpages
    • webapp: added Getting started in the landing page

    Fixes:

    • webapp: fixed extraction params discarding Feature Names selected from Feature Classes
    opened by pwoznicki 1
  • example_WORC.ipynb not being up to date with the repository

    example_WORC.ipynb not being up to date with the repository

    Describe the bug

    In example_WORC.ipynb there are function calls that do not work due to code in the repository being changed while the example_WORC.ipynb code wasn't updated to reflect those changes

    Steps/Code to Reproduce

    import pandas as pd
    from pathlib import Path
    from autorad.external.download_WORC import download_WORCDatabase
    
    # Set where we will save our data and results
    base_dir = Path.cwd() / "autorad_tutorial"
    data_dir = base_dir / "data"
    result_dir = base_dir / "results"
    data_dir.mkdir(exist_ok=True, parents=True)
    result_dir.mkdir(exist_ok=True, parents=True)
    
    %load_ext autoreload
    %autoreload 2
    
    download data (it may take a few minutes)
    download_WORCDatabase(
    dataset="Desmoid",
    data_folder=data_dir,
    n_subjects=100,
    )
    
    
    
    from autorad.data.utils import get_paths_with_separate_folder_per_case  # 1
    
    # create a table with all the paths
    paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    paths_df.sample(5)
    
    
    from autorad.data.dataset import ImageDataset
    from autorad.feature_extraction.extractor import FeatureExtractor
    import logging
    
    logging.getLogger().setLevel(logging.CRITICAL)
    
    image_dataset = ImageDataset(
        paths_df,
        ID_colname="ID",
        root_dir=data_dir,
    )
    
    # Let's take a look at the data, plotting random 10 cases
    image_dataset.plot_examples(n=10, window=None)
    
    extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml") # 2
    feature_df = extractor.run()
    
    

    Expected Results

    1: Importing the function get_paths_with_separate_folder_per_case

    2: Using default_MR.yaml as value for extraction_params

    Actual Results

    1:

    ---------------------------------------------------------------------------
    ModuleNotFoundError                       Traceback (most recent call last)
    Input In [7], in <cell line: 1>()
    ----> 1 from autorad.data.utils import get_paths_with_separate_folder_per_case
          3 # create a table with all the paths
          4 paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    
    ModuleNotFoundError: No module named 'autorad.data.utils'
    

    2:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Input In [18], in <cell line: 1>()
    ----> 1 extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml")
          2 feature_df = extractor.run()
    
    File ~/AutoRadiomics/autorad/feature_extraction/extractor.py:41, in FeatureExtractor.__init__(self, dataset, feature_set, extraction_params, n_jobs)
         39 self.dataset = dataset
         40 self.feature_set = feature_set
    ---> 41 self.extraction_params = self._get_extraction_param_path(
         42     extraction_params
         43 )
         44 log.info(f"Using extraction params from {self.extraction_params}")
         45 self.n_jobs = set_n_jobs(n_jobs)
    
    File ~/AutoRadiomics/autorad/feature_extraction/extractor.py:55, in FeatureExtractor._get_extraction_param_path(self, extraction_params)
         53     result = default_extraction_param_dir / extraction_params
         54 else:
    ---> 55     raise ValueError(
         56         f"Extraction parameter file {extraction_params} not found."
         57     )
         58 return result
    
    ValueError: Extraction parameter file default_MR.yaml not found.
    

    Fix

    1: change from autorad.data.utils to from autorad.utils.preprocessing 2: change extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml") to extractor = FeatureExtractor(image_dataset, extraction_params="MR_default.yaml")

    opened by wagon-master 1
  • Bugfix/refactor

    Bugfix/refactor

    New features:

    • log feature dataset and splits in MLFlow
    • update docs & add getting-started

    Fixes:

    • fix evaluation in the web app
    • fix docs build in readthedocss
    opened by pwoznicki 0
  • Support various readers (Nibabel, ITK)

    Support various readers (Nibabel, ITK)

    Currently we use Nibabel for loading images. It works only for Nifti images, but a user may want to load a DICOM image, without converting it to Nifti.

    Consider using MONAI LoadImage() function that provides a common interface for loading both Nifti and DICOM images.

    enhancement 
    opened by pwoznicki 0
Releases(v0.2.2)
  • v0.2.2(Jul 30, 2022)

Owner
Piotr Woźnicki
Recently graduated medical doctor, working on medical image analysis.
Piotr Woźnicki
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022