DANet for Tabular data classification/ regression.

Related tags

Deep LearningDANet
Overview

Deep Abstract Networks

A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression.

Downloads

Dataset

Download the datasets from the following links:

(Optional) Before starting the program, you may change the file format to .pkl by using svm2pkl() or csv2pkl() in ./data/data_util.py

Weights for inference models

The demo weights for Forest Cover Type dataset is available in the folder "./Weights/".

How to use

Setting

  1. Clone or download this repository, and cd the path where you clone it.
  2. Build a working python environment. Python 3.7 is fine for this repository.
  3. Install packages in requirements.txt, e.g., by pip install -r requirements.txt.
  4. The default hyperparameters are in ./config/default.py.

Training

  1. Set the hyperparameters in config file (./config/default.py or ./config/*.yaml).
    Notably, the hyperparameters in .yaml file will cover those in default.py.

  2. Run python main.py --c [config_path] --g [gpu_id].

    • -c: The config file path
    • -g: GPU device ID
  3. The checkpoint models and best models will be saved at ./logs.

Inference

  1. Replace the resume_dir path by the file path of model/weight.
  2. Run codes by using python predict.py -d [dataset_name] -m [model_file_path] -g [gpu_id].
    • -d: Dataset name
    • -m: Model path for loading
    • -g: GPU device ID

Config Hyperparameters

Normal parameters

  • dataset: str
    Dataset name must match those in ./data/dataset.py.

  • task: str
    Using 'classification' or 'regression'.

  • resume_dir: str
    The log path containing the checkpoint models.

  • logname: str
    The directory names of the models save at ./logs.

  • seed: int
    Random seed.

Model parameters

  • layer: int (default=20)
    Number of abstract layers to stack

  • k: int (default=5)
    Number of masks

  • base_outdim: int (default=64)
    The output feature dimension in abstract layer.

  • drop_rate: float (default=0.1) Dropout rate in shortcut module

Fit parameters

  • lr: float (default=0.008)
    Learning rate

  • max_epochs: int (default=5000)
    Maximum number of epochs for training.

  • patience: int (default=1500)
    Number of consecutive epochs without improvement before performing early stopping. If patience is set to 0, then no early stopping will be performed.

  • batch_size: int (default=8192)
    Number of examples per batch.

  • virtual_batch_size: int (default=256)
    Size of the mini batches used for "Ghost Batch Normalization". virtual_batch_size must divide batch_size

Owner
Ronnie Rocket
Ronnie Rocket
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021