Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Overview

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020)

Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, Amir Globerson

Main project page.

Generation of scenes with many objects. Our method achieves better performance on such scenes than previous methods. Left: A partial input scene graph. Middle: Generation using [1]. Right: Generation using our proposed method.

Our novel contributions are:

  1. We propose a model that uses canonical representations of SGs, thus obtaining stronger invariance properties. This in turn leads to generalization on semantically equivalent graphs and improved robustness to graph size and noise in comparison to existing methods.
  2. We show how to learn the canonicalization process from data.
  3. We use our canonical representations within an SG-to-image model and demonstrate our approach results in an improved generation on Visual Genome, COCO, and CLEVR, compared to the state-of-the-art baselines.

Dependencies

To get started with the framework, install the following dependencies:

Data

Follow the commands below to build the data.

COCO

./scripts/download_coco.sh

VG

./scripts/download_vg.sh

CLEVR

Please download the CLEVR-Dialog Dataset from here.

Training

Training a SG-to-Layout model:

python -m scripts.train --dataset={packed_coco, packed_vg, packed_clevr}  

Training AttSpade - Layout-to-Image model:

Optional arguments:

--output_dir=output_path_dir/%s (s is the run_name param) --run_name=folder_name --checkpoint_every=N (default=5000) --dataroot=datasets_path --debug (a flag for debug)

Train on COCO (with boxes):

python -m scripts.train --dataset=coco --batch_size=16 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --min_objects=1 --max_objects=1000 --gpu_ids=0 --use_cuda

Train on VG:

python -m scripts.train --dataset=vg --batch_size=16 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --min_objects=3 --max_objects=30 --gpu_ids=0 --use_cuda

Train on CLEVR:

python -m scripts.train --dataset=packed_clevr --batch_size=6 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --use_img_disc=1 --gpu_ids=0 --use_cuda

Inference

Inference SG-to-Layout

To produce layout outputs and IOU results, run:

python -m scripts.layout_generation --checkpoint=<trained_model_folder> --gpu_ids=<0/1/2>

A new folder with the results will be created in: <trained_model_folder>

Pre-trained Models:

Packed COCO: link

Packed Visual Genome: link

Inference Layout-to-Image (LostGANs)

Please use LostGANs implementation

Inference Layout-to-Image (from dataframe)

To produce the image from a dataframe, run:

python -m scripts.generation_dataframe --checkpoint=<trained_model_folder>

A new folder with the results will be created in: <trained_model_folder>

Inference Layout-to-Image (AttSPADE)

COCO/ Visual Genome

  1. Generate images from a layout (dataframe):
python -m scripts.generation_dataframe --gpu_ids=<0/1/2> --checkpoint=<model_path> --output_dir=<output_path> --data_frame=<dataframe_path> --mode=<gt/pred>

mode=gt defines use gt_boxes while mode=pred use predicted box by our WSGC model from the paper (see the dataframe for more details).

Pre-trained Models:
COCO

dataframe: link; 128x128 resolution: link; 256x256 resolution: link

Visual Genome

dataframe: link; 128x128 resolution: link; 256x256 resolution: link

  1. Generate images from a scene graph:
python -m scripts.generation_attspade --gpu_ids=<0/1/2> --checkpoint=<model/path> --output_dir=<output_path>

CLEVR

This script generates CLEVR images on large scene graphs from scene_graphs.pkl. It generates the CLEVR results for both WSGC + AttSPADE and Sg2Im + AttSPADE. For more information, please refer to the paper.

python -m scripts.generate_clevr --gpu_ids=<0/1/2> --layout_not_learned_checkpoint=<model_path> --layout_learned_checkpoint=<model_path> --output_dir=<output_path>
Pre-trained Models:

Baseline (Sg2Im): link; WSGC: link

Acknowledgment

References

[1] Justin Johnson, Agrim Gupta, Li Fei-Fei, Image Generation from Scene Graphs, 2018.

Citation

@inproceedings{herzig2019canonical,
 author    = {Herzig, Roei and Bar, Amir and Xu, Huijuan and Chechik, Gal and Darrell, Trevor and Globerson, Amir},
 title     = {Learning Canonical Representations for Scene Graph to Image Generation},
 booktitle = {Proc. of the European Conf. on Computer Vision (ECCV)},
 year      = {2020}
}
Owner
roei_herzig
CS PhD student at Tel Aviv University. Algorithm Researcher, R&D at Nexar & Trax. Studied MSc (CS), BSc (CS) and BSc (Physics) at TAU.
roei_herzig
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022