Code for "Layered Neural Rendering for Retiming People in Video."

Overview

Layered Neural Rendering in PyTorch

This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering for Retiming People in Video."

This is not an officially supported Google product.

Prerequisites

  • Linux
  • Python 3.6+
  • NVIDIA GPU + CUDA CuDNN

Installation

This code has been tested with PyTorch 1.4 and Python 3.8.

  • Install PyTorch 1.4 and other dependencies.
    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

Data Processing

  • Download the data for a video used in our paper (e.g. "reflection"):
bash ./datasets/download_data.sh reflection
  • Or alternatively, download all the data by specifying all.
  • Download the pretrained keypoint-to-UV model weights:
bash ./scripts/download_kp2uv_model.sh

The pretrained model will be saved at ./checkpoints/kp2uv/latest_net_Kp2uv.pth.

  • Generate the UV maps from the keypoints:
bash datasets/prepare_iuv.sh ./datasets/reflection

Training

  • To train a model on a video (e.g. "reflection"), run:
python train.py --name reflection --dataroot ./datasets/reflection --gpu_ids 0,1
  • To view training results and loss plots, visit the URL http://localhost:8097. Intermediate results are also at ./checkpoints/reflection/web/index.html.

You can find more scripts in the scripts directory, e.g. run_${VIDEO}.sh which combines data processing, training, and saving layer results for a video.

Note:

  • It is recommended to use >=2 GPUs, each with >=16GB memory.
  • The training script first trains the low-resolution model for --num_epochs at --batch_size, and then trains the upsampling module for --num_epochs_upsample at --batch_size_upsample. If you do not need the upsampled result, pass --num_epochs_upsample 0.
  • Training the upsampling module requires ~2.5x memory as the low-resolution model, so set batch_size_upsample accordingly. The provided scripts set the batch sizes appropriately for 2 GPUs with 16GB memory.
  • GPU memory scales linearly with the number of layers.

Saving layer results from a trained model

  • Run the trained model:
python test.py --name reflection --dataroot ./datasets/reflection --do_upsampling
  • The results (RGBA layers, videos) will be saved to ./results/reflection/test_latest/.
  • Passing --do_upsampling uses the results of the upsampling module. If the upsampling module hasn't been trained (num_epochs_upsample=0), then remove this flag.

Custom video

To train on your own video, you will have to preprocess the data:

  1. Extract the frames, e.g.
    mkdir ./datasets/my_video && cd ./datasets/my_video 
    mkdir rgb && ffmpeg -i video.mp4 rgb/%04d.png
    
  2. Resize the video to 256x448 and save the frames in my_video/rgb_256, and resize the video to 512x896 and save in my_video/rgb_512.
  3. Run AlphaPose and Pose Tracking on the frames. Save results as my_video/keypoints.json
  4. Create my_video/metadata.json following these instructions.
  5. If your video has camera motion, either (1) stabilize the video, or (2) maintain the camera motion by computing homographies and saving as my_video/homographies.txt. See scripts/run_cartwheel.sh for a training example with camera motion, and see ./datasets/cartwheel/homographies.txt for formatting.

Note: Videos that are suitable for our method have the following attributes:

  • Static camera or limited camera motion that can be represented with a homography.
  • Limited number of people, due to GPU memory limitations. We tested up to 7 people and 7 layers. Multiple people can be grouped onto the same layer, though they cannot be individually retimed.
  • People that move relative to the background (static people will be absorbed into the background layer).
  • We tested a video length of up to 200 frames (~7 seconds).

Citation

If you use this code for your research, please cite the following paper:

@inproceedings{lu2020,
  title={Layered Neural Rendering for Retiming People in Video},
  author={Lu, Erika and Cole, Forrester and Dekel, Tali and Xie, Weidi and Zisserman, Andrew and Salesin, David and Freeman, William T and Rubinstein, Michael},
  booktitle={SIGGRAPH Asia},
  year={2020}
}

Acknowledgments

This code is based on pytorch-CycleGAN-and-pix2pix.

Owner
Google
Google ❤️ Open Source
Google
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023