Code for "Layered Neural Rendering for Retiming People in Video."

Overview

Layered Neural Rendering in PyTorch

This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering for Retiming People in Video."

This is not an officially supported Google product.

Prerequisites

  • Linux
  • Python 3.6+
  • NVIDIA GPU + CUDA CuDNN

Installation

This code has been tested with PyTorch 1.4 and Python 3.8.

  • Install PyTorch 1.4 and other dependencies.
    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

Data Processing

  • Download the data for a video used in our paper (e.g. "reflection"):
bash ./datasets/download_data.sh reflection
  • Or alternatively, download all the data by specifying all.
  • Download the pretrained keypoint-to-UV model weights:
bash ./scripts/download_kp2uv_model.sh

The pretrained model will be saved at ./checkpoints/kp2uv/latest_net_Kp2uv.pth.

  • Generate the UV maps from the keypoints:
bash datasets/prepare_iuv.sh ./datasets/reflection

Training

  • To train a model on a video (e.g. "reflection"), run:
python train.py --name reflection --dataroot ./datasets/reflection --gpu_ids 0,1
  • To view training results and loss plots, visit the URL http://localhost:8097. Intermediate results are also at ./checkpoints/reflection/web/index.html.

You can find more scripts in the scripts directory, e.g. run_${VIDEO}.sh which combines data processing, training, and saving layer results for a video.

Note:

  • It is recommended to use >=2 GPUs, each with >=16GB memory.
  • The training script first trains the low-resolution model for --num_epochs at --batch_size, and then trains the upsampling module for --num_epochs_upsample at --batch_size_upsample. If you do not need the upsampled result, pass --num_epochs_upsample 0.
  • Training the upsampling module requires ~2.5x memory as the low-resolution model, so set batch_size_upsample accordingly. The provided scripts set the batch sizes appropriately for 2 GPUs with 16GB memory.
  • GPU memory scales linearly with the number of layers.

Saving layer results from a trained model

  • Run the trained model:
python test.py --name reflection --dataroot ./datasets/reflection --do_upsampling
  • The results (RGBA layers, videos) will be saved to ./results/reflection/test_latest/.
  • Passing --do_upsampling uses the results of the upsampling module. If the upsampling module hasn't been trained (num_epochs_upsample=0), then remove this flag.

Custom video

To train on your own video, you will have to preprocess the data:

  1. Extract the frames, e.g.
    mkdir ./datasets/my_video && cd ./datasets/my_video 
    mkdir rgb && ffmpeg -i video.mp4 rgb/%04d.png
    
  2. Resize the video to 256x448 and save the frames in my_video/rgb_256, and resize the video to 512x896 and save in my_video/rgb_512.
  3. Run AlphaPose and Pose Tracking on the frames. Save results as my_video/keypoints.json
  4. Create my_video/metadata.json following these instructions.
  5. If your video has camera motion, either (1) stabilize the video, or (2) maintain the camera motion by computing homographies and saving as my_video/homographies.txt. See scripts/run_cartwheel.sh for a training example with camera motion, and see ./datasets/cartwheel/homographies.txt for formatting.

Note: Videos that are suitable for our method have the following attributes:

  • Static camera or limited camera motion that can be represented with a homography.
  • Limited number of people, due to GPU memory limitations. We tested up to 7 people and 7 layers. Multiple people can be grouped onto the same layer, though they cannot be individually retimed.
  • People that move relative to the background (static people will be absorbed into the background layer).
  • We tested a video length of up to 200 frames (~7 seconds).

Citation

If you use this code for your research, please cite the following paper:

@inproceedings{lu2020,
  title={Layered Neural Rendering for Retiming People in Video},
  author={Lu, Erika and Cole, Forrester and Dekel, Tali and Xie, Weidi and Zisserman, Andrew and Salesin, David and Freeman, William T and Rubinstein, Michael},
  booktitle={SIGGRAPH Asia},
  year={2020}
}

Acknowledgments

This code is based on pytorch-CycleGAN-and-pix2pix.

Owner
Google
Google ❤️ Open Source
Google
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021