Sequence to Sequence Models with PyTorch

Overview

Sequence to Sequence models with PyTorch

This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch

At present it has implementations for :

* Vanilla Sequence to Sequence models

* Attention based Sequence to Sequence models from https://arxiv.org/abs/1409.0473 and https://arxiv.org/abs/1508.04025

* Faster attention mechanisms using dot products between the **final** encoder and decoder hidden states

* Sequence to Sequence autoencoders (experimental)

Sequence to Sequence models

A vanilla sequence to sequence model presented in https://arxiv.org/abs/1409.3215, https://arxiv.org/abs/1406.1078 consits of using a recurrent neural network such as an LSTM (http://dl.acm.org/citation.cfm?id=1246450) or GRU (https://arxiv.org/abs/1412.3555) to encode a sequence of words or characters in a source language into a fixed length vector representation and then deocoding from that representation using another RNN in the target language.

Sequence to Sequence

An extension of sequence to sequence models that incorporate an attention mechanism was presented in https://arxiv.org/abs/1409.0473 that uses information from the RNN hidden states in the source language at each time step in the deocder RNN. This attention mechanism significantly improves performance on tasks like machine translation. A few variants of the attention model for the task of machine translation have been presented in https://arxiv.org/abs/1508.04025.

Sequence to Sequence with attention

The repository also contains a simpler and faster variant of the attention mechanism that doesn't attend over the hidden states of the encoder at each time step in the deocder. Instead, it computes the a single batched dot product between all the hidden states of the decoder and encoder once after the decoder has processed all inputs in the target. This however comes at a minor cost in model performance. One advantage of this model is that it is possible to use the cuDNN LSTM in the attention based decoder as well since the attention is computed after running through all the inputs in the decoder.

Results on English - French WMT14

The following presents the model architecture and results obtained when training on the WMT14 English - French dataset. The training data is the english-french bitext from Europral-v7. The validation dataset is newstest2011

The model was trained with following configuration

* Source and target word embedding dimensions - 512

* Source and target LSTM hidden dimensions - 1024

* Encoder - 2 Layer Bidirectional LSTM

* Decoder - 1 Layer LSTM

* Optimization - ADAM with a learning rate of 0.0001 and batch size of 80

* Decoding - Greedy decoding (argmax)
Model BLEU Train Time Per Epoch
Seq2Seq 11.82 2h 50min
Seq2Seq FastAttention 18.89 3h 45min
Seq2Seq Attention 22.60 4h 47min

Times reported are using a Pre 2016 Nvidia GeForce Titan X

Running

To run, edit the config file and execute python nmt.py --config <your_config_file>

NOTE: This only runs on a GPU for now.

Owner
Sandeep Subramanian
MILA (Universite de Montreal) Formerly CMU | MSR | FAIR | Element AI
Sandeep Subramanian
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022