Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Overview

Crowd-Kit: Computational Quality Control for Crowdsourcing

GitHub Tests Codecov

Documentation

Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets. We strive to implement functionality that simplifies working with crowdsourced data.

Currently, Crowd-Kit contains:

  • implementations of commonly-used aggregation methods for categorical, pairwise, textual, and segmentation responses
  • metrics of uncertainty, consistency, and agreement with aggregate
  • loaders for popular crowdsourced datasets

The library is currently in a heavy development state, and interfaces are subject to change.

Installing

Installing Crowd-Kit is as easy as pip install crowd-kit

Getting Started

This example shows how to use Crowd-Kit for categorical aggregation using the classical Dawid-Skene algorithm.

First, let us do all the necessary imports.

from crowdkit.aggregation import DawidSkene
from crowdkit.datasets import load_dataset

import pandas as pd

Then, you need to read your annotations into Pandas DataFrame with columns task, performer, label. Alternatively, you can download an example dataset.

df = pd.read_csv('results.csv')  # should contain columns: task, performer, label
# df, ground_truth = load_dataset('relevance-2')  # or download an example dataset

Then you can aggregate the performer responses as easily as in scikit-learn:

aggregated_labels = DawidSkene(n_iter=100).fit_predict(df)

More usage examples

Implemented Aggregation Methods

Below is the list of currently implemented methods, including the already available ( βœ… ) and in progress ( 🟑 ).

Categorical Responses

Method Status
Majority Vote βœ…
Dawid-Skene βœ…
Gold Majority Vote βœ…
M-MSR βœ…
Wawa βœ…
Zero-Based Skill βœ…
GLAD βœ…
BCC 🟑

Textual Responses

Method Status
RASA βœ…
HRRASA βœ…
ROVER βœ…

Image Segmentation

Method Status
Segmentation MV βœ…
Segmentation RASA βœ…
Segmentation EM βœ…

Pairwise Comparisons

Method Status
Bradley-Terry βœ…
Noisy Bradley-Terry βœ…

Citation

@inproceedings{HCOMP2021/CrowdKit,
  author    = {Ustalov, Dmitry and Pavlichenko, Nikita and Losev, Vladimir and Giliazev, Iulian and Tulin, Evgeny},
  title     = {{A General-Purpose Crowdsourcing Computational Quality Control Toolkit for Python}},
  year      = {2021},
  booktitle = {The Ninth AAAI Conference on Human Computation and Crowdsourcing: Works-in-Progress and Demonstration Track},
  series    = {HCOMP~2021},
  eprint    = {2109.08584},
  eprinttype = {arxiv},
  eprintclass = {cs.HC},
  url       = {https://www.humancomputation.com/assets/wips_demos/HCOMP_2021_paper_85.pdf},
  language  = {english},
}

Questions and Bug Reports

License

Β© YANDEX LLC, 2020-2021. Licensed under the Apache License, Version 2.0. See LICENSE file for more details.

Comments
  • Crowd-Kit Learning

    Crowd-Kit Learning

    This is just an example of what this subpackage will contain.

    We need to configure setup.cfg and add new tests. Here I suggest to discuss the concept.

    opened by pilot7747 10
  • Fix the documentation generation issues

    Fix the documentation generation issues

    Stick to YAML files hosted in https://github.com/Toloka/docs and use the proper includes.

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [x] I have updated the documentation accordingly.
    • [ ] I have added tests to cover my changes.
    • [ ] All new and existing tests passed.
    documentation enhancement 
    opened by dustalov 9
  • Add MACE

    Add MACE

    Is it possible that you add MACE ? It is often used in my field but there is only a Java implementation that is hard to integrate into Python projects.

    enhancement good first issue 
    opened by jcklie 4
  • Add MACE aggregation model

    Add MACE aggregation model

    I have added the MACE aggregation model. https://www.cs.cmu.edu/~hovy/papers/13HLT-MACE.pdf

    Description

    Based on the original VB inference implementation, I wrote it in Python.

    Connected issues (if any)

    https://github.com/Toloka/crowd-kit/issues/5

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [x] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    opened by pilot7747 3
  • Documentation updates

    Documentation updates

    Updated index.md and the Classification section:

    1. added extra information to the models descriptions;
    2. added descriptions for parameters;
    3. fixed error and typos in descriptions.
    opened by Natalyl3 2
  • Binary Relevance aggregation

    Binary Relevance aggregation

    Description

    I have added code for Binary Relevance aggregation - simple method for multi-label classification. This approach treats each label as a class in binary classification task and aggregates it separately.

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [x] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    opened by denaxen 2
  • Use mypy --strict

    Use mypy --strict

    Description

    This pull request enforces a stricter set of mypy type checks by enabling the strict mode. It also fixes several type inconsistencies. As the NumPy type annotations were introduced in version 1.20 (January 2021), some Crowd-Kit installations might broke, but I believe it is a worthy contribution.

    Connected issues (if any)

    Types of changes

    • [x] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [x] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    enhancement 
    opened by dustalov 2
  • Run Jupyter notebooks with tests

    Run Jupyter notebooks with tests

    Description

    This pull request runs the Jupyter notebooks with examples on the current version of Crowd-Kit with the rest of the test suite on GitHub Actions.

    Connected issues (if any)

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    enhancement good first issue 
    opened by dustalov 2
  • Dramatically improve the code maintainability

    Dramatically improve the code maintainability

    This pull request is probably the best thing that could happen to Crowd-Kit code maintainability.

    Description

    In this pull request, we switch from unnecessarily verbose Python stub files to more convenient inline type annotations. During this, many type annotations were fixed. We also removed the manage_docstring decorator and the corresponding utility functions.

    I think this change might break the documentation generation process. We will release a new version of Crowd-Kit only after this is fixed.

    Connected issues (if any)

    Types of changes

    • [x] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [x] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    bug documentation enhancement 
    opened by dustalov 2
  • Add header and LM-based aggregation item

    Add header and LM-based aggregation item

    Description

    This pull request makes README.md nicer. It adds the missing language model-based textual aggregation method.

    Connected issues (if any)

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [ ] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    documentation 
    opened by dustalov 2
  • Renamed columns?

    Renamed columns?

    Hi, the guide says

    df = pd.read_csv('results.csv') # should contain columns: task, performer, label

    but when I load this file, then the second column is worker and not performer. I had used crowdkit with dataframes that had columns: task, performer, label, but after an update, it broke.

    opened by jcklie 2
  • Ordinal Labels

    Ordinal Labels

    Is it possible to support aggregation of ordinal labels as a part of this toolkit via this reduction algorithm.

    • Labels are categorical but have an ordering defined 1 < ... < K.
    • The K class ordinal labels are transformed into Kβˆ’1 binary class label data.
    • Each of the binary task is then aggregated via crowdkit to estimate Pr[yi > c] for c = 1,...,K βˆ’1.
    • The probability of the actual class values can then be obtained as Pr[yi = c] = Pr[yi > cβˆ’1 and yi ≀ c] = Pr[yi > cβˆ’1]βˆ’Pr[yi > c].
    • The class with the maximum probability is assigned to the instance
    enhancement 
    opened by vikasraykar 2
Releases(v1.2.0)
Owner
Toloka
Data labeling platform for ML
Toloka
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis βˆ†-Conformity is a local homophily measur

2 Jan 09, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian SchΓ€fer 0 Jun 19, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022