Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Overview

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles

This project is for the paper: Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles.

Experimental Results

Main Results

Preliminaries

It is tested under Ubuntu Linux 16.04.1 and Python 3.6 environment, and requries some packages to be installed:

Downloading Datasets

  • MNIST-M: download it from the Google drive. Extract the files and place them in ./dataset/mnist_m/.
  • SVHN: need to download Format 2 data (*.mat). Place the files in ./dataset/svhn/.
  • USPS: download the usps.h5 file. Place the file in ./dataset/usps/.

Overview of the Code

  • train_model.py: train standard models via supervised learning.
  • train_dann.py: train domain adaptive (DANN) models.
  • eval_pipeline.py: evaluate various methods on all tasks.

Running Experiments

Examples

  • To train a standard model via supervised learning, you can use the following command:

python train_model.py --source-dataset {source dataset} --model-type {model type} --base-dir {directory to save the model}

{source dataset} can be mnist, mnist-m, svhn or usps.

{model type} can be typical_dnn or dann_arch.

  • To train a domain adaptive (DANN) model, you can use the following command:

python train_dann.py --source-dataset {source dataset} --target-dataset {target dataset} --base-dir {directory to save the model} [--test-time]

{source dataset} (or {target dataset}) can be mnist, mnist-m, svhn or usps.

The argument --test-time is to indicate whether to replace the target training dataset with the target test dataset.

  • To evaluate a method on all training-test dataset pairs, you can use the following command:

python eval_pipeline.py --model-type {model type} --method {method}

{model type} can be typical_dnn or dann_arch.

{method} can be conf_avg, ensemble_conf_avg, conf, trust_score, proxy_risk, our_ri or our_rm.

Train All Models

You can run the following scrips to pre-train all models needed for the experiments.

  • run_all_model_training.sh: train all supervised learning models.
  • run_all_dann_training.sh: train all DANN models.
  • run_all_ensemble_training.sh: train all ensemble models.

Evaluate All Methods

You can run the following script to get the results reported in the paper.

  • run_all_evaluation.sh: evaluate all methods on all tasks.

Acknowledgements

Part of this code is inspired by estimating-generalization and TrustScore.

Citation

Please cite our work if you use the codebase:

@article{chen2021detecting,
  title={Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles},
  author={Chen, Jiefeng and Liu, Frederick and Avci, Besim and Wu, Xi and Liang, Yingyu and Jha, Somesh},
  journal={arXiv preprint arXiv:2106.15728},
  year={2021}
}

License

Please refer to the LICENSE.

Owner
Jiefeng Chen
Phd student at UW-Madision, working on trustworthy machine learning.
Jiefeng Chen
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022