Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Overview

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles

This project is for the paper: Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles.

Experimental Results

Main Results

Preliminaries

It is tested under Ubuntu Linux 16.04.1 and Python 3.6 environment, and requries some packages to be installed:

Downloading Datasets

  • MNIST-M: download it from the Google drive. Extract the files and place them in ./dataset/mnist_m/.
  • SVHN: need to download Format 2 data (*.mat). Place the files in ./dataset/svhn/.
  • USPS: download the usps.h5 file. Place the file in ./dataset/usps/.

Overview of the Code

  • train_model.py: train standard models via supervised learning.
  • train_dann.py: train domain adaptive (DANN) models.
  • eval_pipeline.py: evaluate various methods on all tasks.

Running Experiments

Examples

  • To train a standard model via supervised learning, you can use the following command:

python train_model.py --source-dataset {source dataset} --model-type {model type} --base-dir {directory to save the model}

{source dataset} can be mnist, mnist-m, svhn or usps.

{model type} can be typical_dnn or dann_arch.

  • To train a domain adaptive (DANN) model, you can use the following command:

python train_dann.py --source-dataset {source dataset} --target-dataset {target dataset} --base-dir {directory to save the model} [--test-time]

{source dataset} (or {target dataset}) can be mnist, mnist-m, svhn or usps.

The argument --test-time is to indicate whether to replace the target training dataset with the target test dataset.

  • To evaluate a method on all training-test dataset pairs, you can use the following command:

python eval_pipeline.py --model-type {model type} --method {method}

{model type} can be typical_dnn or dann_arch.

{method} can be conf_avg, ensemble_conf_avg, conf, trust_score, proxy_risk, our_ri or our_rm.

Train All Models

You can run the following scrips to pre-train all models needed for the experiments.

  • run_all_model_training.sh: train all supervised learning models.
  • run_all_dann_training.sh: train all DANN models.
  • run_all_ensemble_training.sh: train all ensemble models.

Evaluate All Methods

You can run the following script to get the results reported in the paper.

  • run_all_evaluation.sh: evaluate all methods on all tasks.

Acknowledgements

Part of this code is inspired by estimating-generalization and TrustScore.

Citation

Please cite our work if you use the codebase:

@article{chen2021detecting,
  title={Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles},
  author={Chen, Jiefeng and Liu, Frederick and Avci, Besim and Wu, Xi and Liang, Yingyu and Jha, Somesh},
  journal={arXiv preprint arXiv:2106.15728},
  year={2021}
}

License

Please refer to the LICENSE.

Owner
Jiefeng Chen
Phd student at UW-Madision, working on trustworthy machine learning.
Jiefeng Chen
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022