PyTorch implementation of SQN based on CloserLook3D's encoder

Overview

SQN_pytorch

This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, check our SQN_tensorflow repo.

Caution: currently, this repo does not achieve a satisfactory result as the SQN paper reports. For performance details, check performance section.

The repo is still under development, with the aim of reaching the level of performance reported in the SQN paper.(Note: our SQN_tensorflow repo has slightly higher performance than this pytorch repo.)

Please open an issue, if you have any comments and suggestions for improving the model performance.

TODOs

  • implement the training strategy mentioned in the Appendix of the paper.
  • ablation study
  • benchmark weak supervision

Install python packages

The latest codes are tested on two Ubuntu settings:

  • Ubuntu 18.04, Nvidia 1080, CUDA 10.1, PyTorch 1.4 and Python 3.6
  • Ubuntu 18.04, Nvidia 3090, CUDA 11.3, PyTorch 1.4 and Python 3.6

For details setting up the development environment, check CloserLook3D Pytorch version. To facilitate settings, below I also provide my own bash script( install.sh ) to create a conda environment from scratch for this repo. (You may need tailor this script according to your own system)

#!/bin/bash
ENV_NAME='closerlook'
conda create –n $ENV_NAME python=3.6.10 -y
source activate $ENV_NAME
conda install -c anaconda pillow=6.2 -y
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch -y
conda install -c conda-forge opencv -y
pip3 install termcolor tensorboard h5py easydict

Datasets

Take S3DIS as an example.

Scene Segmentation on S3DIS

You can download the S3DIS dataset from here (4.8 GB). You only need to download the file named Stanford3dDataset_v1.2.zip, unzip and move (or link) it to data/S3DIS/Stanford3dDataset_v1.2. (same as the CloserLook3D repo setting.)

The file structure should look like:

<root>
├── cfgs
│   └── s3dis
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           └── Area_6
├── init.sh
├── datasets
├── function
├── models
├── ops
└── utils

run prepare-s3dis-sqn.sh to preprocess the S3DIS dataset. This script will generate a processed folder with the below structure with five types of data, including: raw, sub-sampled point clouds for each area, KDtrees for each sub-sampled area, projection indices for each raw point over the sub-sampled area and weak labels for raw and sub-sampled point clouds (involving different weak proportion of the dataset, e.g., 0.1, 0.01, 0.001, etc.. Details check datasets/S3DIS_sqn.py and my summary notes in this file.

The processed folder is organized as follows:

<root>
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           ├── Area_6
│           └── processed
│             ├── weak_label_0.01
│             ├── weak_label_1.0
│             ├── Area_1_0.040_sub.pkl
│             ├── Area_1.pkl
│             ├── ...(many other pkl files)

Compile custom CUDA operators

sh init.sh

Run

use the run-sqn.sh script for training or evaluation.

The core training script is as follows:

python -m torch.distributed.launch \
--master_port 1234567 \
--nproc_per_node ${num_gpu} \
function/train_s3dis_dist_sqn.py \
--dataset_name ${dataset_name} \
--cfg cfgs/${dataset_name}/pospool_xyz_avg_sqn.yaml \
--num_points ${num_points} \
--batch_size ${batch_size} \
--val_freq 20 \
--weak_ratio ${weak_ratio}

The core evaluation script is as follows:

python -m torch.distributed.launch \
--master_port 12346 \
--nproc_per_node 1 \
function/evaluate_s3dis_dist_sqn.py \
--cfg cfgs/s3dis/pospool_xyz_avg_sqn.yaml \
--load_path <checkpoint>
[--log_dir <log directory>]

Performance on S3DIS

The experiments are still in progress due to my slow GPU.

Model Weak ratio Performance (mIoU, %) Description
Official RandLA-Net 100% 63.0 Fully supervised method trained with full labels.
Official SQN 1/1000 61.4 This official SQN uses additional techniques to improve the performance, our replicaed SQN currently does not investigate this yet. Official SQN does not provide results of S3DIS under the weak ratio of 1/10 and 1/100
Our replicated SQN 1/10 51.4 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/100 25.22 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/1000 21.10 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.

Acknowledgements

Our pytorch codes borrowed a lot from CloserLook3D and the custom trilinear interoplation CUDA ops are modified from erikwijmans's Pointnet2_PyTorch.

Citation

If you find our work useful in your research, please consider citing:

@article{pytorchpointnet++,
    Author = {YIN, Chao},
    Title = {SQN Pytorch implementation based on CloserLook3D's encoder},
    Journal = {https://github.com/PointCloudYC/SQN_pytorch},
    Year = {2021}
   }

@article{hu2021sqn,
    title={SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels},
    author={Hu, Qingyong and Yang, Bo and Fang, Guangchi and Guo, Yulan and Leonardis, Ales and Trigoni, Niki and Markham, Andrew},
    journal={arXiv preprint arXiv:2104.04891},
    year={2021}
  }
Owner
PointCloudYC
Ph.D candidate at HKUST, focus on point cloud processing and deep learning.
PointCloudYC
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
5 Jan 05, 2023
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022