The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Overview

Armer Driver

QUT Centre for Robotics Open Source License: MIT Build Status Language grade: Python Coverage

image

Armer documentation can be found here

image

Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways:

In addition to a multiple control method layer, Armer is designed to be a compatability layer allowing the user to use the same code across different robotic platforms. Armer supports control for physical and simulated arms giving users the ability to develop even without access to a physical manipulator.

Below is a gif of 3 different simulated arms moving with the same cartesian velocity commands.

image

Requirements

Several ROS action servers, topics and services are set up by Armer to enable this functionality. A summary of these can be found here.

Armer is built on the Python Robotics Toolbox (RTB) and requires a URDF loaded RTB model to calculate the required movement kinematics, RTB comes with browser based simulator Swift which Armer uses as an out of the box simulator.

Due to these supporting packages using Armer with a manipulator will require several requirements:

Software requirements

Robot specific requirements

  • ROS drivers with joint velocity controllers
  • Robotics Toolbox model

Installation

Copy and paste the following code snippet into a terminal to create a new catkin workspace and install Armer to it. Note this script will also add the workspace to be sourced every time a bash terminal is opened.

sudo apt install python3-pip 
mkdir -p ~/armer_ws/src && cd ~/armer_ws/src 
git clone https://github.com/qcr/armer.git && git clone https://github.com/qcr/armer_msgs 
cd .. && rosdep install --from-paths src --ignore-src -r -y 
catkin_make 
echo "source ~/armer_ws/devel/setup.bash" >> ~/.bashrc 
source ~/armer_ws/devel/setup.bash
echo "Installation complete!"

Supported Arms

Armer relies on the manipulator's ROS driver to communicate with the low level hardware so the the ROS drivers must be started along side Armer.

Currently Armer driver has packages that launches Armer and the target manipulator's drivers are bundled together. If your arm model has a hardware package, control should be a fairly plug and play experience. (An experience we are still working on so please let us know if it isn't.). Below are the github pages to arms with hardware packages. Install directions can be found on their respective pages.

For more information on setting up manipulators not listed here see the Armer documentation, Supported Arms.

Usage

The Armer interface can be launched with the following command:

roslaunch armer_{ROBOT_MODEL} robot_bringup.launch config:={PATH_TO_CONFIG_YAML_FILE} sim:={true/false}

After launching, an arm can be controlled in several ways. Some quick tutorials can be referenced below:

For more information and examples see the Armer documentation

Owner
QUT Centre for Robotics (QCR)
A collection of the open source projects released by the QUT Centre for Robotics (QCR).
QUT Centre for Robotics (QCR)
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022