U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

Overview

U-Net Implementation

By Christopher Ley

This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

This data set is a Binary Segmentation exercise of ~400 test images of cars from various angles such as those shown here:

Initial implementation for Binary Segmentation

The implementation performs almost as the winners of the competition (Dice: 0.9926 vs 0.99733) after only 5 epoch and we would expect the results to be as good as the winners using this architecture with more training and a little tweaking of the training hyper-parameters.

Here are the scores for training over 5 epochs by running:

(DeepLearning): python3 train.py

Training Results

0%|          | 0/540 [00:00<?, ?it/s]Accuracy: 103298971/467927040 = 22.08%
Dice score: 0.36127230525016785
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0949]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:39_epoch_0.pth.tar
Accuracy: 460498379/467927040 = 98.41%
Dice score: 0.9652246236801147
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0469]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:48_epoch_1.pth.tar
Accuracy: 461809183/467927040 = 98.69%
Dice score: 0.9711439609527588
100%|██████████| 540/540 [05:56<00:00,  1.51it/s, loss=0.0283]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:56_epoch_2.pth.tar
Accuracy: 465675737/467927040 = 99.52%
Dice score: 0.9891990423202515
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0194]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:04_epoch_3.pth.tar
Accuracy: 465397979/467927040 = 99.46%
Dice score: 0.9878408908843994
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0142]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:12_epoch_4.pth.tar
Accuracy: 466399501/467927040 = 99.67%
Dice score: 0.9926225543022156

And an example of the output vs the ground truth of the validation set, I removed whole makes for the validation set, all 16 angles, the network had never seen this particular make from any angle.

Ground Truth

Prediction

Although limited in scope (binary segmentation for only cars), this architecture performs well with multiclass segmentation, I extended this to apply segmentation to the NYUv2 which is a multiclass objective, with little modification to the above code.

I will clean this up and upload the results and modifications soon!

Owner
Christopher Ley
Artificial Intelligence Researcher
Christopher Ley
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022