Improving Deep Network Debuggability via Sparse Decision Layers

Overview

Improving Deep Network Debuggability via Sparse Decision Layers

This repository contains the code for our paper:

Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong*, Shibani Santurkar*, Aleksander Madry
Paper: http://arxiv.org/abs/2105.04857
Blog posts: Part1 and Part2

Pipeline overview

@article{wong2021leveraging,
  title={Leveraging Sparse Linear Layers for Debuggable Deep Networks},
  author={Wong, Eric and Santurkar, Shibani and M{\k{a}}dry, Aleksander},
  journal={arXiv preprint arXiv:2105.04857},
  year={2021}
}

Getting started

Our code relies on the MadryLab public robustness library, as well as the glm_saga library which will be automatically installed when you follow the instructions below. The glm_saga library contains a standalone implementation of our sparse GLM solver.

  1. Clone our repo: git clone https://github.com/microsoft/DebuggableDeepNetworks.git

  2. Setup the lucent submodule using: git submodule update --init --recursive

  3. We recommend using conda for dependencies:

    conda env create -f environment.yml
    conda activate debuggable
    

Training sparse decision layers

Contents:

  • main.py fits a sparse decision layer on top of the deep features of the specified pre-trained (language/vision) deep network
  • helpers/ has some helper functions for loading datasets, models, and features
  • language/ has some additional code for handling language models and datasets

To run the settings in our paper, you can use the following commands:

# Sentiment classification
python main.py --dataset sst --dataset-path   --dataset-type language --model-path barissayil/bert-sentiment-analysis-sst --arch bert --out-path ./tmp/sst/ --cache

# Toxic comment classification (biased)
python main.py --dataset jigsaw-toxic --dataset-path   --dataset-type language --model-path unitary/toxic-bert --arch bert --out-path ./tmp/jigsaw-toxic/ --cache --balance

# Toxic comment classification (unbiased)
python main.py --dataset jigsaw-alt-toxic --dataset-path   --dataset-type language --model-path unitary/unbiased-toxic-roberta --arch roberta --out-path ./tmp/unbiased-jigsaw-toxic/ --cache --balance

# Places-10 
python main.py --dataset places-10 --dataset-path  --dataset-type vision --model-path  --arch resnet50 --out-path ./tmp/places/ --cache

# ImageNet
python main.py --dataset imagenet --dataset-path  --dataset-type vision --model-path  --arch resnet50 --out-path ./tmp/imagenet/ --cache

Interpreting deep features

After fitting a sparse GLM with one of the above commands, we provide some notebooks for inspecting and visualizing the resulting features. See inspect_vision_models.ipynb and inspect_language_models.ipynb for the vision and language settings respectively.

Maintainers

Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022