Improving Deep Network Debuggability via Sparse Decision Layers

Overview

Improving Deep Network Debuggability via Sparse Decision Layers

This repository contains the code for our paper:

Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong*, Shibani Santurkar*, Aleksander Madry
Paper: http://arxiv.org/abs/2105.04857
Blog posts: Part1 and Part2

Pipeline overview

@article{wong2021leveraging,
  title={Leveraging Sparse Linear Layers for Debuggable Deep Networks},
  author={Wong, Eric and Santurkar, Shibani and M{\k{a}}dry, Aleksander},
  journal={arXiv preprint arXiv:2105.04857},
  year={2021}
}

Getting started

Our code relies on the MadryLab public robustness library, as well as the glm_saga library which will be automatically installed when you follow the instructions below. The glm_saga library contains a standalone implementation of our sparse GLM solver.

  1. Clone our repo: git clone https://github.com/microsoft/DebuggableDeepNetworks.git

  2. Setup the lucent submodule using: git submodule update --init --recursive

  3. We recommend using conda for dependencies:

    conda env create -f environment.yml
    conda activate debuggable
    

Training sparse decision layers

Contents:

  • main.py fits a sparse decision layer on top of the deep features of the specified pre-trained (language/vision) deep network
  • helpers/ has some helper functions for loading datasets, models, and features
  • language/ has some additional code for handling language models and datasets

To run the settings in our paper, you can use the following commands:

# Sentiment classification
python main.py --dataset sst --dataset-path   --dataset-type language --model-path barissayil/bert-sentiment-analysis-sst --arch bert --out-path ./tmp/sst/ --cache

# Toxic comment classification (biased)
python main.py --dataset jigsaw-toxic --dataset-path   --dataset-type language --model-path unitary/toxic-bert --arch bert --out-path ./tmp/jigsaw-toxic/ --cache --balance

# Toxic comment classification (unbiased)
python main.py --dataset jigsaw-alt-toxic --dataset-path   --dataset-type language --model-path unitary/unbiased-toxic-roberta --arch roberta --out-path ./tmp/unbiased-jigsaw-toxic/ --cache --balance

# Places-10 
python main.py --dataset places-10 --dataset-path  --dataset-type vision --model-path  --arch resnet50 --out-path ./tmp/places/ --cache

# ImageNet
python main.py --dataset imagenet --dataset-path  --dataset-type vision --model-path  --arch resnet50 --out-path ./tmp/imagenet/ --cache

Interpreting deep features

After fitting a sparse GLM with one of the above commands, we provide some notebooks for inspecting and visualizing the resulting features. See inspect_vision_models.ipynb and inspect_language_models.ipynb for the vision and language settings respectively.

Maintainers

Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022