Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Overview

Hierarchical Metadata-Aware Document Categorization under Weak Supervision

This project provides a weakly supervised framework for hierarchical metadata-aware document categorization.

Links

Installation

For training, a GPU is strongly recommended.

Keras

The code is based on Keras. You can find installation instructions here.

Dependency

The code is written in Python 3.6. The dependencies are summarized in the file requirements.txt. You can install them like this:

pip3 install -r requirements.txt

Quick Start

To reproduce the results in our paper, you need to first download the datasets. Three datasets are used in our paper: GitHub, ArXiv, and Amazon. Once you unzip the downloaded file (i.e., data.zip), you can see three folders related to these three datasets, respectively.

Dataset #Documents #Layers #Classes (including ROOT) #Leaves Sample Classes
GitHub 1,596 2 18 14 Computer Vision (Layer-1), Image Generation (Layer-2)
ArXiv 26,400 2 94 88 cs (Layer-1), cs.AI (Layer-2)
Amazon 147,000 2 166 147 Automotive (Layer-1), Car Care (Layer-2)

You need to put these 3 folders under the main folder ./. Then the following running script can be used to run the model.

./test.sh

Level-1/Level-2/Overall Micro-F1/Macro-F1 scores will be shown in the last several lines of the output. The classification result can be found under your dataset folder. For example, if you are using the GitHub dataset, the output will be ./github/out.txt.

Data

In each of the three folders (i.e., github/, arxiv/, and amazon/), there is a json file, where each line represents one document with text and metadata information.

For GitHub, the json format is

{
  "id": "Natsu6767/DCGAN-PyTorch",  
  "user": [
    "Natsu6767"
  ],
  "text": "pytorch implementation of dcgan trained on the celeba dataset deep convolutional gan ...",
  "tags": [
    "pytorch",
    "dcgan",
    "gan",
    "implementation",
    "deeplearning",
    "computer-vision",
    "generative-model"
  ],
  "labels": [
    "$Computer-Vision",
    "$Image-Generation"
  ]
}

The "user" and "tags" fields are metadata.

For ArXiv, the json format is

{
  "id": "1001.0063",
  "authors": [
    "Alessandro Epasto",
    "Enrico Nardelli"
  ],
  "text": "on a model for integrated information in this paper we give a thorough presentation ...",
  "labels": [
    "cs",
    "cs.AI"
  ]
}

The "authors" field is metadata.

For Amazon, the json format is

{
  "user": [
    "A39IXH6I0WT6TK"
  ],
  "product": [
    "B004DLPXAO"
  ],
  "text": "works really great only had a problem when it was updated but they fixed it right away ...",
  "labels": [
    "Apps-for-Android",
    "Books-&-Comics"
  ]
}

The "user" and "product" fields are metadata.

NOTE 1: If you would like to run our code on your own dataset, when you prepare this json file, make sure that: (1) You list the labels in the top-down order. For example, if the label path of your repository is ROOT-A-B-C, then the "labels" field should be ["A", "B", "C"]. (2) For each document, its metadata field is always represented by a list. For example, the "user" field should be ["A39IXH6I0WT6TK"] instead of "A39IXH6I0WT6TK".

Running on New Datasets

In the Quick Start section, we include a pretrained embedding file in the downloaded folders. If you would like to re-train the embedding (or you have a new dataset), please follow the steps below.

  1. Create a directory named ${dataset} under the main folder (e.g., ./github).

  2. Prepare four files:
    (1) ./${dataset}/label_hier.txt indicating the parent children relationships between classes. The first class of each line is the parent class, followed by all its children classes. Whitespace is used as the delimiter. The root class must be named as ROOT. Make sure your class names do not contain whitespace.
    (2) ./${dataset}/doc_id.txt containing labeled document ids for each class. Each line begins with the class name, and then document ids in the corpus (starting from 0) of the corresponding class separated by whitespace.
    (3) ./${dataset}/${json-name}.json. You can refer to the provided json format above. Make sure it has two fields "text" and "labels". You can add your own metadata fields in the json.
    (4) ./${dataset}/meta_dict.json indicating the names of your metadata fields. For example, for GitHub, it should be

{"metadata": ["user", "tags"]}

For ArXiv, it should be

{"metadata": ["authors"]}
  1. Install the dependencies GSL and Eigen. For Eigen, we already provide a zip file JointEmbedding/eigen-3.3.3.zip. You can directly unzip it in JointEmbedding/. For GSL, you can download it here.

  2. ./prep_emb.sh. Make sure you change the dataset/json names. The embedding file will be saved to ./${dataset}/embedding_sph.

After that, you can train the classifier as mentioned in Quick Start (i.e., ./test.sh). Please always refer to the example datasets when adapting the code for a new dataset.

Citation

If you find the implementation useful, please cite the following paper:

@inproceedings{zhang2021hierarchical,
  title={Hierarchical Metadata-Aware Document Categorization under Weak Supervision},
  author={Zhang, Yu and Chen, Xiusi and Meng, Yu and Han, Jiawei},
  booktitle={WSDM'21},
  pages={770--778},
  year={2021},
  organization={ACM}
}
Owner
Yu Zhang
CS Ph.D. student at UIUC; Data Mining
Yu Zhang
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023