Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Related tags

Deep Learninglorien
Overview

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Build Status codecov.io

Lorien is an infrastructure to massively explore/benchmark the best schedules of given deep learning models. Lorien is deep learning compiler (DLC) agnostic, so one can easily implement a Lorien dialect to support a new DLC.

Motivation

Although auto-tuning frameworks for deep learning compilers (e.g., TVM, Halide) are capable of delivering high-performance operators that match or even beat vendor kernel libraries, auto-tuning a deep learning model could take days or even weeks, especially for the model with many workloads like ResNet-152 or Inception V3.

With such a long tuning time, one key question To maintain the best user experience during deep model developments and deployments is How to promptly deliver schedules with reasonably good performance upon user requests? Accordingly, we design and implement Lorien to remove the following obstacles:

  1. Tuning Process Scalability and Stability. Long tuning time affects not only the time-to-market but the stability. To the best of our knowledge, none of existing auto-tuning frameworks is designed for tuning on multiple machines, and none of them consider fault tolerance. The tuning process, hence, has to be manually started over if it was accidentally interrupted. This is crucial especially on edge devices, which are less reliable than cloud instances and may fail frequently due to overheat or other factors.

  2. Tuning Result Management. Although almost all auto-tuning frameworks provide mechanisms to serialize tuning results for future applications, all of them use file-based mechanism and have different formats. As a result, engineers have additional work to orchestrate the data for efficient usage.

  3. Time to Deliver an Efficient Schedule. Even a database is constructed to serve most user requests, it is still possible that certain workloads are missing. However, modern auto-tuning frameworks usually leverage iterative search algorithms with on-device measurements, which usually take hours, to find an efficient schedule for an unseen workload. The unfavorably expensive querying/tuning overhead makes production deployment impractical.

Lorien is a unified and extensible infrastructure for delivering efficient deep learning workloads upon requests. Lorien allows auto-tuning deep learning frameworks to be easily plugged in as dialects, and supports large scale tuning on both cloud and edge platforms. The tuning results are managed in a NoSQL database with a unified data model that fits all auto-tuning frameworks. While the best schedules managed in the database can be used to compile deep learning models to achieve high performance, the tuning logs managed in a file system can also 1) enable more comprehensive performance analysis on different platforms, and 2) help train a performance cost model with an AutoML solution.

Please visit the official documentations for setup guideline and tutorials.

System Requirements

  • Python 3.6+

  • Amazon DynamoDB (local or aws): DynamoDB is used for storing and maintain the tuned schedules. You can choose to either of the following:

    1. Launch a local version using JVM on your machine, and specify endpoint URL (e.g. --db "endpoint_url: http://:8000") when invoking a tuning procses.

    2. Configure AWS credential on your machine to directly use AWS DynamoDB service. In this case, you do not have to specify any argument in tuning configurations.

  • AWS S3 (optional): S3 is used to store the full tuning logs (JSON files generated by AutoTVM). If you specify --commit-log-to bucket_name and configure an AWS credential on your machine, then all complete tuning logs will be uploaded to the S3 bucket for debugging or research prupose. Note that this is an optional requirement, so you can ignore the --commit-log-to argument if you do not want to keep full tuning logs.

  • AWS Batch (AWS ECR): You have to set up AWS batch computation environments, job queues, and job definitions in advance to use Lorien AWS batch worker for tuning. See this blog post for reference. You may also need to build an upload Lorien docker images to AWS ECR as the AWS batch job running container.

Docker Images

You can directly make use of pre-built Lorien docker images on Docker Hub, which includes two typs of images for CPU and CPU+CUDA platforms. The docker images have TVM deployed so you can launch a tuning process in the container after cloning Lorien. The docker image is also used for Lorien CI purpose.

Documentation

https://awslabs.github.io/lorien/

Citing Lorien

If you use Lorien in a scientific publication, please cite the following paper:

Cody Hao Yu, Xingjian Shi, Haichen Shen, Zhi Chen, Mu Li, Yida Wang, "Lorien: Efficient Deep Learning Workloads Delivery", Proceedings of the 12th ACM Symposium on Cloud Computing. 2021.

@inproceedings{yu2021lorien,
  title={Lorien: Efficient Deep Learning Workloads Delivery},
  author={Yu, Cody Hao and Shi, Xingjian and Shen, Haichen and Chen, Zhi and Li, Mu and Wang, Yida},
  booktitle={Proceedings of the Seventh ACM Symposium on Cloud Computing},
  year={2021}
}
Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022