Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Overview

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Official implementation of:

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation
Jialian Wu, Liangchen Song, Tiancai Wang, Qian Zhang and Junsong Yuan
In ACM International Conference on Multimedia , Seattle WA, October 12-16, 2020.

Many thanks to mmdetection authors for their great framework!

News

Mar 2, 2021 Update: We test Forest R-CNN on LVIS v1.0 set. Thanks for considering comparing with our method :)

Jan 1, 2021 Update: We propose Forest DetSeg, an extension of original Forest R-CNN. Forest DetSeg extends the proposed method to RetinaNet. While the new work is under review now, the code has been available. More details will come up along with the new paper.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Forest R-CNN

Inference

# Examples
# single-gpu testing
python tools/test.py configs/lvis/forest_rcnn_r50_fpn.py forest_rcnn_res50.pth --out out.pkl --eval bbox segm

# multi-gpu testing
./tools/dist_test.sh configs/lvis/forest_rcnn_r50_fpn.py forest_rcnn_res50.pth ${GPU_NUM} --out out.pkl --eval bbox segm

Training

# Examples
# single-gpu training
python tools/train.py configs/lvis/forest_rcnn_r50_fpn.py --validate

# multi-gpu training
./tools/dist_train.sh configs/lvis/forest_rcnn_r50_fpn.py ${GPU_NUM} --validate

(Note that we found in our experiments the best result comes up around the 20-th epoch instead of the end of training.)

Forest RetinaNet

Inference

# Examples  
# multi-gpu testing
./tools/dist_test.sh configs/lvis/forest_retinanet_r50_fpn_1x.py forest_retinanet_res50.pth ${GPU_NUM} --out out.pkl --eval bbox segm

Training

# Examples    
# multi-gpu training
./tools/dist_train.sh configs/lvis/forest_retinanet_r50_fpn_1x.py ${GPU_NUM} --validate

Main Results

Instance Segmentation on LVIS v0.5 val set

AP and AP.b denote the mask AP and box AP. r, c, f represent the rare, common, frequent contegoires.

Method Backbone AP AP.r AP.c AP.f AP.b AP.b.r AP.b.c AP.b.f download
MaskRCNN R50-FPN 21.7 6.8 22.6 26.4 21.8 6.5 21.6 28.0 model 
Forest R-CNN R50-FPN 25.6 18.3 26.4 27.6 25.9 16.9 26.1 29.2 model 
MaskRCNN R101-FPN 23.6 10.0 24.8 27.6 23.5 8.7 23.1 29.8 model 
Forest R-CNN R101-FPN 26.9 20.1 27.9 28.3 27.5 20.0 27.5 30.4 model 
MaskRCNN X-101-32x4d-FPN 24.8 10.0 26.4 28.6 24.8 8.6 25.0 30.9 model 
Forest R-CNN X-101-32x4d-FPN 28.5 21.6 29.7 29.7 28.8 20.6 29.2 31.7 model 

Instance Segmentation on LVIS v1.0 val set

Method Backbone AP AP.r AP.c AP.f AP.b
MaskRCNN R50-FPN 19.2 0.0 17.2 29.5 20.0
Forest R-CNN R50-FPN 23.2 14.2 22.7 27.7 24.6

Visualized Examples

Citation

If you find it useful in your research, please consider citing our paper as follows:

@inproceedings{wu2020forest,
title={Forest R-CNN: Large-vocabulary long-tailed object detection and instance segmentation},
author={Wu, Jialian and Song, Liangchen and Wang, Tiancai and Zhang, Qian and Yuan, Junsong},
booktitle={Proceedings of the 28th ACM International Conference on Multimedia},
pages={1570--1578},
year={2020}}
Owner
Jialian Wu
Ph.D. Candidate at SUNY Buffalo
Jialian Wu
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023