A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

Overview

About

This repository provides data and code for the paper:

Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (submitted to NeurIPS 2021 Track on Datasets and Benchmarks Round2)

Authors: Mingkuan Liu, Chi Zhang, Hua Xing, Chao Feng, Monchu Chen, Judith Bishop, Grace Ngapo

Keywords: speech processing, speech dataset, human in the loop, annotation pipeline, quality assurance, speech annotation

Abstract

This paper introduces a human-in-the-loop (HITL) data annotation pipeline to generate high-quality, large-scale speech datasets. The pipeline combines human and machine advantages to more quickly, accurately, and cost-effectively annotate datasets with machine pre-labeling and fully manual auditing. Quality control mechanisms such as blind testing, behavior monitoring, and data validation have been adopted in the annotation pipeline to mitigate potential bias introduced by machine-generated labels. Our A/B testing and pilot results demonstrated the HITL pipeline can improve annotation speed and capacity by at least 80% and quality is comparable to or higher than manual double pass annotation. We are leveraging this scalable pipeline to create and continuously grow ultra-high volume off-the-shelf (UHV-OTS) speech corpora for multiple languages, with the capability to expand to 10,000+ hours per language annually. Customized datasets can be produced from the UHV-OTS corpora using dynamic packaging. UHV-OTS is a long-term Appen project to support commercial and academic research data needs in speech processing. Appen will donate a number of free speech datasets from the UHV-OTS each year to support academic and open source community research under the CC-BY-SA license. We are also releasing the code of the data pre-processing and pre-tagging pipeline under the Apache 2.0 license to allow reproduction of the results reported in the paper. Code and data are available in https://github.com/Appen/UHV-OTS-Speech

HITL speech corpora development system pipeline for UHV-OTS corpora

Reproduce the automated machine pre-labeling results reported in the paper

0. Experiment envirionments setup

We use docker to run all the experiments and data processing for the corpora construction. To illustrate the algorithms used in the automatic modules in our pipeline, we build this docker enveronment containing all the testing scripts or demo scripts of each module. After you git cloned this repo, please run the docker build command like in below.

cd UHV-OTS-Speech
docker build -t uhv-ots-speech-demo:cpu ./

After the images has been built, please docker run the image in a container.

docker run -it uhv-ots-speech-demo:cpu /bin/bash

Inside the container, in /opt/scripts, there are several sub folder, each of which is the testing/demo scripts of a module.

1. Data pre-filtering: synthetic speech detection

We utlized the algorithm propposed in Towards End-to-End Synthetic Speech Detection and adopted the library and pre-trained models in authors's github repo. The original work achieved synthetic speech detection EER as low as 2.16% on in-domain testing data and 1.95% on cross-domain data. We developped a simple demo script to run a part of the ASVspoof2019 and give out the detection results and likelihood.

If the full testing is needed please run the codes in original authors' repo. Please download the ASVspoof 2019 and 2015 data by running following command Inside the container:

cd /opt/scripts/synthetic_detection
./download.sh

But if only want to see how the module is working, inside the container, please run the following command Inside the container to see how it works.

cd /opt/scripts/synthetic_detection
./run_demo.sh 

2. Data pre-processing: music/vocal source separation

We utilized well performed spleeter library for source separation. The spleeter is source separation library of Deezer and was introduced in "Spleeter: a fast and efficient music source separation tool with pre-trained models". We post the script to run this tool on web scraped audio files. To run the tool with sample file, please run following command Inside the container.

cd /opt/scripts/source_separation
./run_demo.sh

The script will try to separate each audio in ./sample_aduio folders into two files, one *_bgm.wav one *_speech.wav, both in mono 16kHz 16bit liner PCM wav format. The rest of automatic processing will be performed on the *_speech.wav file, which is considered to be the speech channel of original audio.

3. Data pre-filtering: language/accent identification

We apply language identification to pre-filter the raw audio data and ensure that the data is correctly routed to the corresponding language data processing pipeline. We trained a language ID systme based on the x-vector, which was introduced in "X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION". The x-vector model was trained with the VoxLingua107 dataset, and the language ID algorithm achieved 93% accuracy on the VoxLingua107 dev set.

The language id module was developped based on the Kaldi recipe. The model and x-vectors have been prepared and stored in this folder, to run the test and get EER, please run the command in below, Inside the container:

cd /opt/scripts/language_id
./run_test.sh

Accent identification is more challenging than language identification. We’ve adopted the x-vector plus LDA/PLDA framework to detect twenty-two different English accents using proprietary data. Our current accent detection accuracy is 75%. The x-vector model and x-vectors of training and testing data were prepared and stored in this folder, same as LDA/PLDA classifier model. To check the performance, please run the command as in below Inside the container:

cd /opt/scripts/accent_id
./run_test.sh

4. Data pre-tagging: speech detection

This is the folder containing the demo scripts of speech segmentation. The speech segmentation in this folder is adopted from the InaSpeechSegmenter which was introduced in AN OPEN-SOURCE SPEAKER GENDER DETECTION FRAMEWORK FOR MONITORING GENDER EQUALITY. We only used the speech detection module of it and it's pretrained model, which can be found in the original authors' repo.

The inaSpeechSegmenter system won the first place in the Music and/or Speech Detection in Music Information Retrieval Evaluation eXchange 2018 (MIREX 2018). This module also achieved 97.5% detection accuracy with an average boundary mismatch of 97ms at Appen's proprietary testset. To run demo of this module, please run the following command Inside the container:

cd /opt/scripts/speech_detection
./run_demo.sh

You can check the output csv file in folder ./output

5. Data pre-tagging: speaker diarization

This is the speaker diarization system developed based on BUT's diarization system introduced in Analysis of the BUT Diarization System for VoxConverse Challenge.

The speaker diarization framework generally involves an embedding stage followed by a clustering stage.

We tested the pipeline with VoxConverse corpus, which is an audio-visual diarization dataset consisting of over 50 hours of multi-speaker clips of human speech, extracted from videos collected on the internet. The DER achieved on VoxConverse using the BUT system is 4.41%, which is consistent with the result in BUT's report.

To download the dataset, please run the command Inside the container as in following:

cd /opt/scripts/speaker_diarization
./download.sh

After the data downloading, please run the test on VoxConverse data by running the commands in below Inside the container:

cd /opt/scripts/speaker_diarization
./run_test.sh

6. Data pre-tagging: speaker clustering & identification

We utlized an ECAPA-TDNN embedding algorithm introduced in Ecapa-tdnn: Emphasized channel412attention, propagation and aggregation in tdnn based speaker verification to generate speaker embeddings, which is used for speaker identification. A pre-trained embedding model by SpeechBrain toolkit is adopted in our pipeline, which produces EER of 0.7% on VoxCeleb 1 dataset.

Please download the VoxCeleb1 data and then run the test to check the system's performance inside the container

cd /opt/scripts/SpeakerSec/
./download.sh
./run_test.sh

7. Data pre-tagging: gender detection

An x-vector embedding model plus Multi-layer Perceptron (MLP) classifier framework is implemented gender_detection folder. We used the x-vector model introduced in "X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION". The pretrained x-vector model was used to extract the x-vectors of training and test data for MLP. Our gender detection model achieved 99.85% accuracy on VoxCeleb1 testing set in VoxCeleb: a large-scale speaker identification dataset. To run the test of gender detection and check results, please run the command Inside the container:

cd /opt/scripts/gender_detection
./run_test.sh

8. Data pre-tagging: speech recognition/transcription

To run the experiments on Librispeech test-clean and test-other data with our own Chain model, please run the following command to download Librispeech data inside the container.

cd /opt/scripts/asr_kaldichain
./download_prepare_extract.sh

The test-clean and test-other data will be downloaded inside the container.

In this module, we trained our own ASR model using Kaldi toolkit introduced in "The kaldi speech recognition toolkit", specifically using the chain model recipe introduced in "Purely sequence-trained neural networks for ASR based on lattice-free MMI", which can be found originally in Kaldi's repo. But we trained our model using 11 corpora at hand, including free public corpora, purchased corpora, and self owned corpora.

To run the test on Librispeech test-other and test-clean data with our trained model, please run the following command, inside the container.

cd /opt/scripts/asr_kaldichain
./run_test.sh

9. Data pre-tagging: domain/topic detection

So far we adopted a pipeline of topic detection of Multi-label Text Classification using BERT introduced in webpage. It was developped by original author based on the BERT. It applied BERT to the problem of multi-label text classification. We assembled the original scripts from the repo to replicate the Kaggle’s Toxic Comment Classification Challenge to benchmark BERT’s performance for the multi-label text classification.

To run the benchmark test, please run the following commands inside the container

cd /opt/scripts/topic_detection
./run_test.sh

UHV-OTS dataset format

Detailed exaplanation of UHV-OTS dataset format is attached here.

Sample codes to parse UHV-OTS dataset to Kaldi style format

A script generate_kaldi_file.py was provided to generate the Kaldi format documents to run a Kaldi experiments. After you acquired a batch of UHV-OTS-Speehc data, you can run this script as in follow:

./generate_kaldi_file.py path-to-batch-data

In this repo, we prepared a sample of batch data in ./sample_dataset, you can try the converting script on that folder to check the generated Kaldi documents.

Speech Annotation Instruction

Detailed annotation guideline is attached here.

License

Software license

The code and pre-trained models of our speech data pre-processing and pre-tagging pipeline are under the Apache 2.0 license to allow reproduction of the results reported in the paper.

Dataset license

The UHV-OTS speech corpora development is an ongoing, long-term Appen project to support commercial and academic research data needs for tasks related to speech processing.

Dataset consumers can visit https://appen.com/off-the-shelf-datasets/ to order existing datasets or contact us to discuss their specific dataset needs. Appen will consolidate those needs and adjust our UHV-OTS delivery pipeline accordingly, to deliver datasets of highest demand.

Appen will donate a number of free speech datasets from the UHV-OTS each year to support academic and open source community research under the CC-BY-SA license. These free datasets will be downloadable from Appen's https://appen.com/open-source-datasets/ website. The first batch of free available dataset will be released in late of 2021.

References

Owner
Appen Repos
Appen Repos
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022